Further aspects of Equilibria - 2021 1. | Nov/20 | 20/Paper_41/No.4 | | |--------|--|--| | (a) (i | Give the mathematical expression for each of the terms pl | H and K_{w} . | | | pH = | | | | F · · · · · · · · · · · · · · · · · · · | | | | K _w = | | | | | [2 | | (ii | Calculate the pH of 0.027 mol dm ⁻³ NaOH(aq). | | | | | | | | | | | | | | | | | pH =[1 | | (b) T | ne K_a value of chloric(I) acid, HC l O, is 3.72×10^{-8} mol dm ⁻³ . | 100 | | | | A STATE OF THE STA | | (| alculate the pH of 0.010 mol dm ⁻³ HC <i>l</i> O(aq). | | | | | | | | | | | | | m11 — [14] | | | | pH =[1 | | (c) V | ater and octan-1-ol form two layers when mixed. | | | | | | Ethanamide is more soluble in water than it is in octan-1-ol. When 1.00 g of ethanamide is added to 50.0 cm³ of water and this is then shaken with 50.0 cm³ of octan-1-ol, it is found that the water layer contains 0.935 g of ethanamide at equilibrium. (i) Calculate the partition coefficient, $K_{\rm pc}$, for ethanamide in water and octan-1-ol. The 50.0 cm³ of water containing 0.935 g of ethanamide is then shaken with 100.0 cm³ of pure octan-1-ol under the same conditions. Calculate the mass of ethanamide that is dissolved in the 100.0 cm3 of octan-1-ol at equilibrium. > Palpa Calification (Palpa Calification) mass of ethanamide =g [Total: 7] ## 2. Nov/2020/Paper_42/No.2 (a) Write an expression for the K_a of the weak acid HA in terms of the concentrations of the species involved. [1] - (b) The hydroxylammonium ion, $HONH_3^+$, is a weak acid. A $1.00 \times 10^{-3} \, mol \, dm^{-3}$ solution of hydroxylammonium ions has a pH of 4.41. - (i) Calculate the K_a of HONH₃⁺. (ii) Calculate the pK_a of HONH₃⁺. (c) The solubility product of manganese(II) hydroxide, $Mn(OH)_2$, in water is $1.1 \times 10^{-11} \, mol^3 \, dm^{-9}$ at 298 K. Calculate the solubility of Mn(OH)₂ in water at 298 K. solubility = $$mol dm^{-3}$$ [2] [Total: 6] | 3. | March/2020/Paper_4 | 2/No.5b | |----|--------------------|---------| |----|--------------------|---------| (b) A buffer solution was prepared by dissolving 2.04g of gallic acid in 250 cm3 of a solution containing 0.0600 mol dm⁻³ of gallate ions, C₇H₅O₅-. $C_7H_6O_5 \iff C_7H_5O_5^- + H^+ \qquad K_a = 3.89 \times 10^{-5} \text{ mol dm}^{-3} \text{ at } 298 \text{ K}$ | (i) | Define the term buffer solution. | |-----|----------------------------------| | | | | | | | | [2] | Calculate the pH of this buffer solution. (ii) Write two equations to show how a solution containing gallic acid, C7H6O5, and gallate ions, C₇H₅O₅-, acts as a buffer. | | C 2 |
 | | |---|------------|------|-----| | | | | | | • | | | | | | | | [2] | ## **4.** June/2020/Paper_41/No.6b,6g (b) (i) The numerical values of K_a for methanoic acid, HCO₂H, and pyruvic acid, CH₃COCO₂H, are given. | acid | K _a | |-------------------------------------|-------------------------| | HCO ₂ H | 1.78 × 10 ⁻⁴ | | CH ₃ COCO ₂ H | 4.07 × 10 ⁻³ | An equilibrium mixture containing the two acid-base pairs is formed. $$HCO_2^- + CH_3COCO_2H \rightleftharpoons HCO_2H + CH_3COCO_2^-$$ Use the K_a values to calculate the equilibrium constant, K_{eq} , for this equilibrium. (ii) Use your value of K_{eq} to predict the position of this equilibrium. Indicate this by placing a tick (\checkmark) in the appropriate box in the table. Explain your answer. | equilibrium lies | equilibrium lies | equilibrium lies | |------------------|------------------|------------------| | to the left | in the middle | to the right | | | 00 | | [1] (iii) Ethanedioic acid, HO_2CCO_2H , has two dissociation constants, K_{a1} and K_{a2} , whose pK_a values are 1.23 and 4.19. Suggest equations to show the two dissociations that give rise to these pK_a values. (iv) State the mathematical relationship between pK_a and the acid dissociation constant K_a . - (g) The ionic product, K_w , for D₂O has a value of $1.35 \times 10^{-15} \, \text{mol}^2 \, \text{dm}^{-6}$ at 298 K. - (i) Write the expression for the K_w of D_2O . $K_{\rm w} =$ [1] (ii) Calculate the pH of pure, neutral D₂O at 298 K. Assume [D⁺] is equivalent to [H⁺] for pH calculations. | June/ | 2020 | D/Paper_41/No.8 | |-------|-------|--| | (a) | Exp | plain what is meant by the term <i>buffer solution</i> . | | | | | | | | | | | | | | | | [2] | | | | | | (b) | (i) | Write an expression for the acid dissociation constant, $K_{\rm a}$, for ammonium ions, ${\rm NH_4^+(aq)}$. | | | | $K_{\rm a}$ = | | | | | | | | [1] | | | (ii) | Write two equations to describe how a solution containing ammonium ions, $NH_4^+(aq)$, and | | | | ammonia, NH ₃ (aq), can act as a buffer. | | | | | | | | | | | | [2] | | (| (iii) | The numerical value of K_a for NH ₄ +(aq) is 5.6 × 10 ⁻¹⁰ at 298 K. | | | | A buffer solution was prepared by adding 0.80 dm ³ of 0.25 mol dm ⁻³ ammonia, an excess, | | | | to 0.20 dm ³ of 0.20 mol dm ⁻³ hydrochloric acid. | | | | Calculate the pH of the buffer solution formed at 298 K. | | | | | | | | | | | | | | | | | 5. [Total: 8] pH =[3]