Lattice energy - 2021

(b)

- 1. Nov/2020/Paper_41/No.2
 - (a) The lattice energies of three ionic compounds are given.

compound	lattice energy/kJ mol ⁻¹
LiF(s)	-1022
CaO(s)	-3513
SrO(s)	-3310

Define the term lattice energy.
[2
Explain why the lattice energy of CaO is more exothermic than the lattice energy of LiF.
[1
Use the data in the table to estimate approximate values for the lattice energies of magnesium oxide and barium oxide.
$\Delta H_{\text{latt}} MgO(s) = \dots kJ mol$
$\Delta H_{\text{latt}} \text{BaO}(\text{s}) = \dots \text{kJ mol-}$
Write an equation for the reaction between BaO and $\rm H_2O$. Include state symbols.

(ii)	State and explain how the solubilities of the hydroxides of the Group 2 elements vary down the group.
	[4]
	Palpacantibridge Rapapacantibridge

(c)		the following data and relevant data from the <i>Data Booklet</i> to calculate a value for the ce energy of magnesium fluoride, MgF ₂ (s).
		might find it helpful to construct an energy cycle. ow your working.
		electron affinity of F(g) = $-348 \text{kJ} \text{mol}^{-1}$ enthalpy change of atomisation of Mg(s) = $+147 \text{kJ} \text{mol}^{-1}$ enthalpy change of formation of MgF ₂ (s) = $-1102 \text{kJ} \text{mol}^{-1}$
		$\Delta H_{\text{latt}} \text{MgF}_2(\mathbf{s}) =$
(d)	(i)	$\Delta H_{\text{latt}} \text{MgF}_2(\mathbf{s}) =$
		[2]
	(ii)	The electron affinity of carbon, C(g), is -120 kJ mol ⁻¹ .
		Suggest an explanation for the difference between the electron affinity of fluorine and the electron affinity of carbon.

......[1]

[Total: 15]

2. Nov/2020/Paper_42/No.3

(a) The energy cycle shown can be used, along with suitable data, to calculate the enthalpy change of hydration of Ca²⁺(g).

Each arrow indicates a transformation, **W**, **X**, **Y** and **Z**. Each transformation consists of one or more steps.

The following data and data from the Data Booklet should be used.

electron affinity of Cl(g) = $-349 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ enthalpy change of atomisation of Ca(s) = $+193 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ enthalpy change of formation of $CaCl_2(s)$ = $-795 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ enthalpy change of solution of $CaCl_2(s)$ = $-83 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ enthalpy change of hydration of $Cl^-(g)$ = $-364 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$

(i) Calculate the value of the enthalpy change corresponding to transformation **W**. Show your working.

enthalpy change $W = \dots kJ \text{ mol}^{-1}$ [2]

(ii)	Use your answer to (a)(i) and other data to calculate the value of the enthalpy change corresponding to transformation Z .
	enthalpy change Z = kJ mol ⁻¹ [2]
(iii)	Use your answer to (a)(ii) to calculate the enthalpy change of hydration of Ca ²⁺ (g).
	enthalpy change of hydration of Ca ²⁺ (g) =kJ mol ⁻¹ [2]
(iv)	Write an expression, in terms of \mathbf{W} , \mathbf{X} , \mathbf{Y} and/or \mathbf{Z} , to show how the enthalpy changes of \mathbf{two} of the transformations can be used to calculate the lattice energy of $\mathrm{CaC} l_2(\mathbf{s})$.
	lattice energy of $CaCl_2(s) =$ [1]
(v)	State whether the lattice energy of $CaCl_2(s)$ is more or less exothermic than the lattice energy of $MgF_2(s)$.
	Explain your answer.
	[1]

(b)	The	e sulfates of the Group 2 elements vary in solubility down Group 2.
	(i)	Give the names of two solutions that could be mixed to form barium sulfate.
		[1]
	(ii)	State and explain how the solubilities of the sulfates of the Group 2 elements vary down Group 2.
		[4]
		[Total: 13]

3. June/2020/Paper_42/No.7b,7c

(b) Use the following data and relevant data from the *Data Booklet* to calculate a value for the enthalpy change of formation of zinc bromide, ZnBr₂(s).

You might find it helpful to construct an energy cycle.

```
electron affinity of Br(g) = -325 \,\mathrm{kJ} \,\mathrm{mol}^{-1}
enthalpy change of atomisation of Zn(s) = +131 \,\mathrm{kJ} \,\mathrm{mol}^{-1}
enthalpy change of vaporisation of Br<sub>2</sub>(l) = +31 \,\mathrm{kJ} \,\mathrm{mol}^{-1}
lattice energy of ZnBr<sub>2</sub>(s) = -2678 \,\mathrm{kJ} \,\mathrm{mol}^{-1}
```


(c) The lattice energies of ${\rm ZnBr_2}$, ${\rm ZnC}\,l_2$ and ${\rm ZnO}$ are shown.

compound	lattice energy/kJ mol ⁻¹
ZnBr ₂	-2678
ZnCl ₂	-2734
ZnO	-3971

(i)	Explain why there is a difference between the lattice energies of ${\sf ZnBr_2}$ and ${\sf ZnCl_2}$.	
		. [1]
(ii)	Explain why there is a difference between the lattice energies of ${\rm ZnC}\it{l}_{2}$ and ${\rm ZnO}.$	
		. [1]
	Calribrile	
	Palpa	