1. Nov/2021/Paper_42/No.7

The structure of benzene-1,3-dicarboxylic acid is shown.

benzene-1,3-dicarboxylic acid

(a) State the empirical formula of benzene-1,3-dicarboxylic acid.

......[1]

(b) Benzene-1,3-dicarboxylic acid is an isomer of benzene-1,4-dicarboxylic acid. These two isomers can be distinguished by carbon-13 (¹³C) NMR spectroscopy.

State the number of peaks in the carbon-13 (13C) NMR spectrum of each compound.

[2]

(c) Benzene-1,3-dicarboxylic acid can be made by the two-step synthesis shown below.

(i) Name compound P.

.....[1]

(ii) Explain why the major product of this two-step synthesis is benzene-1,3-dicarboxylic acid and **not** benzene-1,4-dicarboxylic acid.

F41

The reagents used for step 1 are CH_3COCl and $AlCl_3$. These reagents give rise to $CH_3\overset{+}{C}=O$ ions which react with compound P .		
Name the mechanism of this reaction.		
	[1]	
Oraw the mechanism of the reaction of CH ₃ C=O ions with compound P. Include a relevant curly arrows and charges, the structure of the intermediate and the structure compound Q.		
intermediate compound Q		
$CH_3\dot{C}=O$		
	[3]	
Suggest a reagent and conditions to convert compound Q into benzene-1,3-dicarboxy acid, in step 2.		
	[1]	
[Total:	10]	
	CH ₃ C=O ions which react with compound P. Name the mechanism of this reaction. Draw the mechanism of the reaction of CH ₃ C=O ions with compound P. Include relevant curly arrows and charges, the structure of the intermediate and the structure compound Q. intermediate compound Q CH ₃ C=O Suggest a reagent and conditions to convert compound Q into benzene-1,3-dicarbox acid, in step 2. [Total:	

2. Nov/2021/Paper_42/No.9

Butylamine, CH₃CH₂CH₂CH₂NH₂, can be synthesised from different organic compounds by using suitable reagents. Each reaction involves one step.

- (a) Complete the table to describe three different syntheses.
 - One of the three syntheses should involve a nucleophilic substitution reaction.
 - The starting organic compound for each synthesis should contain a different functional group.
 - · A different reagent should be used for each synthesis.

starting organic compound	reagent and conditions
	.0.
	10

[Total: 10]

[6]

3. Nov/2021/Paper_42/No.10

(a) Complete the table to show the structure of the organic product from each reaction of phenol, $\rm C_6H_5OH$.

reaction	reaction mixture	structure of organic product
1	phenol + NaOH(aq)	
2	phenol + Na(s)	
3	phenol + (aq) + NaOH, at 4°C	wilde
4	an excess of phenol +	alth

[4]

(b) Identify two reactions from the table in which ethanol would behave in a similar way to phenol.

[1]

[Total: 5]