Carboxylic acids and derivatives - 2021

1. June/2021/Paper_41/No.6

(a) Compare and explain the relative acidities of butanoic acid, ethanol, ethanoic acid and water.

	. >	. >	>
most acidic			least acidic
			0
			N I I I I I I I I I I I I I I I I I I I
			[4]

(b) Three carboxylic acids, methanoic acid, HCO₂H, ethanedioic acid, HO₂CCO₂H, and butanedioic acid, HO₂CCH₂CH₂CO₂H, are compared. Two tests were carried out on separate samples of each organic acid, as shown.

The following results were obtained.	✓ = observed change	x = no observed reaction
	- O	

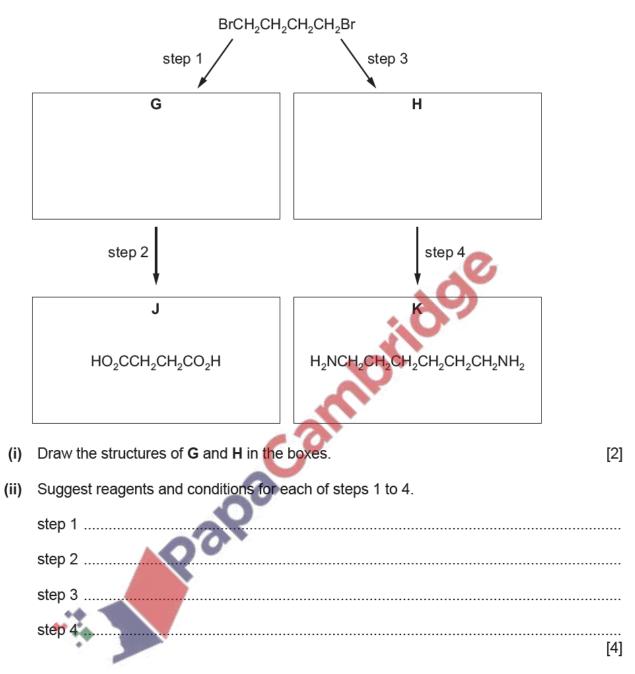
test	reagents and conditions	HCO ₂ H	HO2CCO2H	HO ₂ CCH ₂ CH ₂ CO ₂ H	observed change
1		60	Q x	×	
2	***		\checkmark	×	

(i) Complete the table with the reagents and conditions and the observed change for a positive test.

Assume these organic acids all have a similar acid strength.

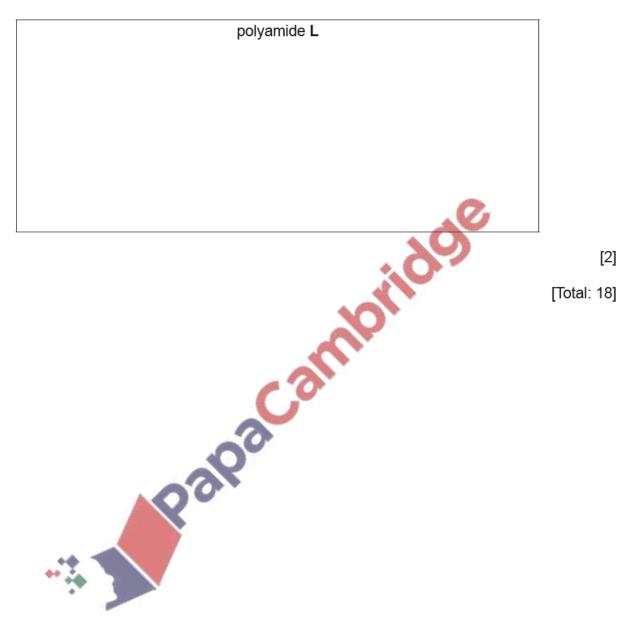
[3]

(ii) Each compound, HCO₂H, HO₂CCO₂H and HO₂CCH₂CH₂CO₂H, is dissolved seperately in CDC*l*₃. Proton (¹H) NMR and carbon-13 (¹³C) NMR spectra are then obtained.


Complete the table.

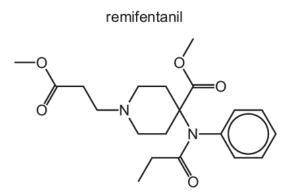
compound	number of peaks in proton NMR	number of peaks in carbon-13 NMR
HCO ₂ H		
HO ₂ CCO ₂ H		
HO ₂ CCH ₂ CH ₂ CO ₂ H		

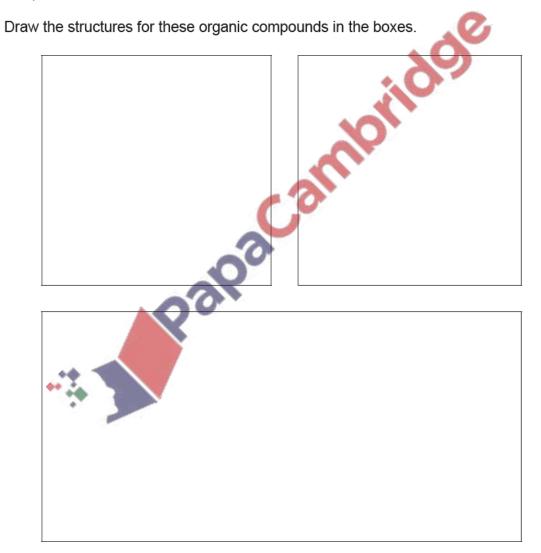
(iii) The proton NMR spectrum of HCO₂H in D₂O is obtained. Describe and explain the difference observed between this spectrum and the proton NMR spectrum of HCO₂H in (b)(ii).


[2]

(c) 1,4-dibromobutane, $Br(CH_2)_4Br$, is used in the synthesis of the dicarboxylic acid J and diamine K as shown.

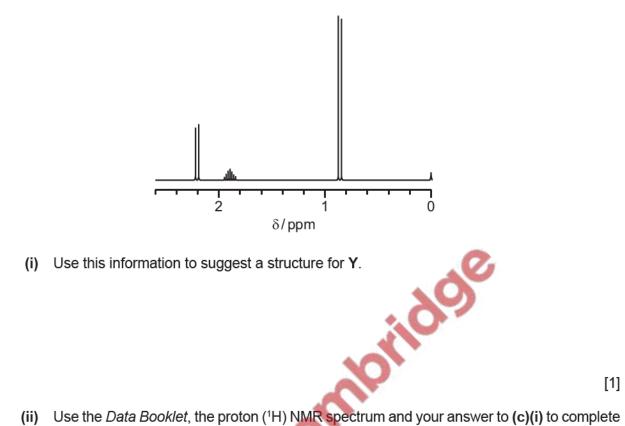
(d) Polyamide L can be synthesised from dicarboxylic acid J, $HO_2C(CH_2)_2CO_2H$, and diamine K, $H_2N(CH_2)_6NH_2$.


Draw the repeat unit of the polymer formed in the box. Any functional groups should be shown displayed.


- 2. June/2021/Paper_42/No.8
 - (a) State and explain the relative rate of hydrolysis of acyl chlorides, alkyl chlorides and aryl chlorides.

	>	>	
fastest		slowest	
	apaca		[3]

(b) The drug remifentanil is shown.



Remifentanil is **completely** hydrolysed under acidic conditions. Three different organic compounds are formed.

[3]

(c) Compound Y, C₅H₁₀O₂, reacts with Na₂CO₃(aq) to evolve bubbles of gas. The proton (¹H) NMR spectrum of compound Y in D₂O is shown.

(ii) Use the *Data Booklet*, the proton (¹H) NMR spectrum and your answer to (c)(i) to complete the table.

chemical shift (δ)	environment of proton splitting pattern	number of ¹ H atoms responsible for the peak
0.95		
1.90		
2.20		
		[3]

[Total: 10]