Chemical energetics - 2021

- 1. March/2021/Paper_42/No.2
 - (a) Iron(II) compounds are generally only stable in neutral, non-oxidising conditions.

It is difficult to determine the lattice energy of FeO experimentally.

(i) Use data from the *Data Booklet* and this Born–Haber cycle to calculate the lattice energy, ΔH_{latt} , of FeO(s) in kJ mol⁻¹.

(ii)	Most naturally occurring samples of iron($\!\operatorname{II}\!$) oxide are found as the mineral wüstite.
	Wüstite has formula $Fe_{20}O_x$. It contains both Fe^{2+} and Fe^{3+} ions.
	90% of the iron is present as Fe ²⁺ and 10% is present as Fe ³⁺ .
	Deduce the value of x.

	[1 _]
(iii)	State and explain how the lattice energy of FeO(s) compares to the lattice energy of CaO(s).
	[2
	"" Pak

(b) Heating of FeO results in the formation of Fe₃O₄, as shown.

reaction 1 4FeO
$$\rightarrow$$
 Fe + Fe₃O₄

Each formula unit of Fe_3O_4 contains one Fe^{2+} and two Fe^{3+} ions.

(i)	Show how reaction 1	can be described	ed as a disproportionation reaction.	
-----	---------------------	------------------	--------------------------------------	--

Fe₃O₄(I) can be electrolysed using inert electrodes to form Fe.

(ii) Write the half-equation for the reaction that occurs at the anode during the electrolysis of $Fe_3O_4(I)$.

.....[1

(iii) Calculate the maximum mass of iron metal formed when Fe₃O₄(I) is electrolysed for six hours using a current of 50A.

Assume the one Fe²⁺ and two Fe³⁺ ions are discharged at the same rate.

(c) LiFePO, can be used in lithium-ion rechargeable batteries.

When the cell is charging, lithium reacts with a graphite electrode to form LiC₆.

When the cell is discharging, the half-equations for the two processes that occur are as follows.

anode half-equation
$$LiC_6 \rightarrow 6C + Li^+ + e^-$$
 cathode half-equation $Li^+ + FePO_4 + e^- \rightarrow LiFePO_4$

(i) State one possible advantage of developing cells such as lithium-ion rechargeable batteries.

.....[1]

(ii) Use the cathode half-equation to determine the change, if any, in oxidation states of lithium and iron at the **cathode** during discharging.

metal	change in oxidation state during discharging		
metai	from	to	
lithium		70.	
iron	Ó		

(iii) Write the equation for the overall reaction that occurs when this cell is discharging.

.....[1]

[Total: 13]

[1]

2.	June/202	1/Paper_42/No.4
	(a) (i)	Define the term <i>lattice energy</i> .
		[2]
	(::)	
	(ii)	Use the following data to calculate a value for the enthalpy change of solution of copper(II) chloride, $CuCl_2(s)$. You might find it helpful to construct an energy cycle.
		enthalpy change of hydration of $Cl^- = -378 \text{ kJ mol}^{-1}$
		enthalpy change of hydration of $Cu^{2+} = -2099 \text{kJ} \text{mol}^{-1}$ lattice energy of $CuCl_2(s) = -2824 \text{kJ} \text{mol}^{-1}$
		= -2024K011101
		enthalpy change of solution of $CuCl_2(s) = \dots kJmol^{-1}$ [2]
	(iii)	The enthalpy change of hydration of Ca²⁺ is –1579 kJ mol⁻¹.
		Use the Data Booklet to suggest why there is a big difference in the values of ΔH_{hyd} for Ca ²⁺
		and Cu ²⁺ .
		[2]
	(b) (i)	Identify the substances formed at the anode and at the cathode during the electrolysis of
		saturated $CaCl_2(aq)$.
		at the anode
		at the cathode[1]
		1.1

(ii) Calcium can be produced by the electrolysis of molten calcium chloride, CaCl₂(I).

Calculate the mass, in g, of Ca formed when a current of 0.75A passes through ${\rm CaC} l_2({\rm I})$ for 60 minutes.

[A,: Ca, 40.1]

3.

mass of Ca =	g	[2
mass of Ca -	· 9	14

(c) (i) Explain what is meant by the term entropy of a system.

 r	0-	
[1]		

(ii) Place one tick (\checkmark) in each row of the table to show the sign of each entropy change, ΔS .

process	ΔS is negative	∆S is zero	∆S is positive
NaC <i>l</i> dissolving in water			
water solidifying to ice	13		

[1]

(iii) The evaporation of one mole of water has a standard Gibbs free energy change, ΔG° , of +8.6 kJ at 25 °C.

Sketch a graph on the axes to show how ΔG° changes for this process between 25 °C and 150 °C at 101 kPa.

[2]

(d) The reaction between A and B is feasible at low temperatures but is **not** feasible at high temperatures.

$$A + B \rightleftharpoons C + D$$

Deduce the signs of ΔH and ΔS for this reaction and explain why the feasibility changes with temperature.

sign of $\Delta H = \dots$	sign of ΔS =
	[2]
	[Total: 15]