Chemical energetics - 2021 - 1. March/2021/Paper_42/No.2 - (a) Iron(II) compounds are generally only stable in neutral, non-oxidising conditions. It is difficult to determine the lattice energy of FeO experimentally. (i) Use data from the *Data Booklet* and this Born–Haber cycle to calculate the lattice energy, ΔH_{latt} , of FeO(s) in kJ mol⁻¹. | (ii) | Most naturally occurring samples of iron($\!\operatorname{II}\!$) oxide are found as the mineral wüstite. | |------|---| | | Wüstite has formula $Fe_{20}O_x$. It contains both Fe^{2+} and Fe^{3+} ions. | | | 90% of the iron is present as Fe ²⁺ and 10% is present as Fe ³⁺ . | | | Deduce the value of x. | | | | | | [1 _] | |-------|--| | (iii) | State and explain how the lattice energy of FeO(s) compares to the lattice energy of CaO(s). | | | | | | | | | | | | [2 | | | "" Pak | (b) Heating of FeO results in the formation of Fe₃O₄, as shown. reaction 1 4FeO $$\rightarrow$$ Fe + Fe₃O₄ Each formula unit of Fe_3O_4 contains one Fe^{2+} and two Fe^{3+} ions. | (i) | Show how reaction 1 | can be described | ed as a disproportionation reaction. | | |-----|---------------------|------------------|--------------------------------------|--| |-----|---------------------|------------------|--------------------------------------|--| Fe₃O₄(I) can be electrolysed using inert electrodes to form Fe. (ii) Write the half-equation for the reaction that occurs at the anode during the electrolysis of $Fe_3O_4(I)$[1 (iii) Calculate the maximum mass of iron metal formed when Fe₃O₄(I) is electrolysed for six hours using a current of 50A. Assume the one Fe²⁺ and two Fe³⁺ ions are discharged at the same rate. (c) LiFePO, can be used in lithium-ion rechargeable batteries. When the cell is charging, lithium reacts with a graphite electrode to form LiC₆. When the cell is discharging, the half-equations for the two processes that occur are as follows. anode half-equation $$LiC_6 \rightarrow 6C + Li^+ + e^-$$ cathode half-equation $Li^+ + FePO_4 + e^- \rightarrow LiFePO_4$ (i) State one possible advantage of developing cells such as lithium-ion rechargeable batteries.[1] (ii) Use the cathode half-equation to determine the change, if any, in oxidation states of lithium and iron at the **cathode** during discharging. | metal | change in oxidation state during discharging | | | |---------|--|-----|--| | metai | from | to | | | lithium | | 70. | | | iron | Ó | | | (iii) Write the equation for the overall reaction that occurs when this cell is discharging.[1] [Total: 13] [1] | 2. | June/202 | 1/Paper_42/No.4 | |----|----------|---| | | (a) (i) | Define the term <i>lattice energy</i> . | | | | | | | | | | | | | | | | [2] | | | (::) | | | | (ii) | Use the following data to calculate a value for the enthalpy change of solution of copper(II) chloride, $CuCl_2(s)$. You might find it helpful to construct an energy cycle. | | | | enthalpy change of hydration of $Cl^- = -378 \text{ kJ mol}^{-1}$ | | | | enthalpy change of hydration of $Cu^{2+} = -2099 \text{kJ} \text{mol}^{-1}$
lattice energy of $CuCl_2(s) = -2824 \text{kJ} \text{mol}^{-1}$ | | | | = -2024K011101 | enthalpy change of solution of $CuCl_2(s) = \dots kJmol^{-1}$ [2] | | | (iii) | The enthalpy change of hydration of Ca²⁺ is –1579 kJ mol⁻¹. | | | | Use the Data Booklet to suggest why there is a big difference in the values of ΔH_{hyd} for Ca ²⁺ | | | | and Cu ²⁺ . | | | | | | | | | | | | | | | | [2] | | | | | | | (b) (i) | Identify the substances formed at the anode and at the cathode during the electrolysis of | | | | saturated $CaCl_2(aq)$. | | | | at the anode | | | | | | | | at the cathode[1] | | | | 1.1 | (ii) Calcium can be produced by the electrolysis of molten calcium chloride, CaCl₂(I). Calculate the mass, in g, of Ca formed when a current of 0.75A passes through ${\rm CaC} l_2({\rm I})$ for 60 minutes. [A,: Ca, 40.1] **3.** | mass of Ca = | g | [2 | |--------------|-----|----| | mass of Ca - | · 9 | 14 | (c) (i) Explain what is meant by the term entropy of a system. |
r | 0- | | |-------|----|--| | [1] | | | (ii) Place one tick (\checkmark) in each row of the table to show the sign of each entropy change, ΔS . | process | ΔS is negative | ∆S is zero | ∆S is positive | |----------------------------------|------------------------|------------|----------------| | NaC <i>l</i> dissolving in water | | | | | water solidifying to ice | 13 | | | [1] (iii) The evaporation of one mole of water has a standard Gibbs free energy change, ΔG° , of +8.6 kJ at 25 °C. Sketch a graph on the axes to show how ΔG° changes for this process between 25 °C and 150 °C at 101 kPa. [2] (d) The reaction between A and B is feasible at low temperatures but is **not** feasible at high temperatures. $$A + B \rightleftharpoons C + D$$ Deduce the signs of ΔH and ΔS for this reaction and explain why the feasibility changes with temperature. | sign of $\Delta H = \dots$ | sign of ΔS = | |----------------------------|--------------| | | | | | [2] | | | [Total: 15] | | | |