Further aspects of Equilibria - 2021

1. Nov/2021/Paper 41/No.2

Solution \mathbf{Y} is hydrochloric acid, HCl(aq). Solution \mathbf{Z} is aqueous 4-chlorobutanoic acid, $Cl(CH_2)_3CO_2H(aq)$. The p K_a of $Cl(CH_2)_3CO_2H(aq)$ is 4.52. The pH of both solutions is 4.00.

(a) (i) Write an expression for the K_a of $Cl(CH_2)_3CO_2H(aq)$.

 $K_a =$

[1]

(ii) Write a mathematical expression to describe the relationship between $K_{\rm a}$ and p $K_{\rm a}$.

.....[1]

(iii) Calculate [H⁺] in solutions Y and Z.

[H⁺] = mol dm⁻³ [1

(iv) Calculate the ratio $\frac{[HCl]}{[Cl(CH_2)_3CO_2H]}$ dissolved in solution **Z**

(b)	A buffer solution of pH 5.00 is produced by adding sodium propanoate to $5.00\mathrm{g}$ of propanoic acid in $100\mathrm{cm}^3$ of distilled water.
	Calculate the mass of sodium propanoate that must be used to produce this buffer solution. The $K_{\rm a}$ of propanoic acid is $1.35\times 10^{-5}{\rm moldm^{-3}}$.
	[<i>M</i> _r : propanoic acid, 74.0; sodium propanoate, 96.0]
	mass of sodium propanoate = g [3
(c)	Some dilute sulfuric acid is mixed with a small sample of the buffer solution described in (b) The final pH of the mixture is close to 1.
	Explain this observation.
	[2]

Nov/2021/Paper 42/No.2	2.	Nov	/2021	/Paper	42	/No.2
--	----	-----	-------	--------	----	-------

Ethoxyethane, $C_2H_5OC_2H_5$, can dissolve both in water and in octan-1-ol. The expression and numerical value for the partition coefficient of ethoxyethane between water and octan-1-ol are given. Water and octan-1-ol are immiscible.

$$K_{pc} = \frac{\text{concentration of } C_2H_5OC_2H_5 \text{ in octan-1-ol}}{\text{concentration of } C_2H_5OC_2H_5 \text{ in water}} = 6.760 \text{ at } 20 \,^{\circ}\text{C}$$

(a)		an experiment, octan-1-ol at 20 °C is added to a solution of ethoxyethane in water at 20 °C. e mixture is analysed immediately and a value of $K_{\rm pc}$ is calculated.
	The	e calculation is performed correctly; the value calculated is 5.625.
	Exp	plain why the value calculated is less than 6.760.
		[2]
(b)	A so	econd experiment is performed and the value of K_{pc} is found to be 6.760. The concentration ethoxyethane in the octan-1-ol layer is $7.62 \mathrm{g}\mathrm{dm}^{-3}$.
	(i)	Calculate the concentration, in g dm ⁻³ , of ethoxyethane in the aqueous layer.
		gdm ⁻³ [1]
	(ii)	100 cm³ of the octan-1-ol layer is taken and shaken with 100 cm³ of water.
		Calculate the maximum amount, in mol, of ethoxyethane that can be extracted into the water.

..... mol [3]

(c)		aqueous solution of lead(II) nitrate is mixed with an aqueous solution of sodium iodide. A ow precipitate of lead(II) iodide is formed and is filtered out, leaving solution ${\bf X}$.
	The	e concentration of Pb ²⁺ in solution X is 5.68×10^{-3} mol dm ⁻³ .
	The	e concentration of I^- in solution X is $4.20 \times 10^{-4} \text{mol dm}^{-3}$.
	(i)	Use these data to calculate a value for the solubility product, \mathcal{K}_{sp} , of lead(II) iodide.
		State the units of $K_{\rm sp}$.
		$\mathcal{K}_{sp} = \dots$
		units =[2]
	(ii)	Potassium iodide is very soluble in water.
		Describe and explain what is seen if a few drops of saturated potassium iodide solution are added to a portion of solution X .
		[2]
		[Total: 10]

3. March/2021/Paper_42/No.3

lodates are compounds that contain the ${\rm IO_3^-}$ anion.

(a) The IO_3^- anion is shown.

	Explain, with reference to the qualitative model of electron-pair repulsion, why the ${\rm IO_3^-}$ anion has a pyramidal shape.
	<u> </u>
(b)	The reaction of iodine and hot aqueous sodium hydroxide is similar to that of chlorine and hot aqueous sodium hydroxide. Sodium iodate, NaIO ₃ , is formed as one of the products.
	Suggest an equation for the reaction of iodine and hot aqueous sodium hydroxide.

(c) The decomposition of hydrogen peroxide, H_2O_2 , is catalysed by acidified IO_3^- .

 $\rm H_2O_2$ reduces acidified $\rm IO_3^-$ as shown.

$$5\mathrm{H_2O_2} \ + \ 2\mathrm{H^+} \ + \ 2\mathrm{IO_3^-} \ \rightarrow \ \mathrm{I_2} \ + \ 5\mathrm{O_2} \ + \ 6\mathrm{H_2O}$$

This reaction is followed by the oxidation of $\rm I_2$ by $\rm H_2O_2$.

half-equation	E°/V		
$H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$	+1.77		
$IO_3^- + 6H^+ + 5e^- \rightleftharpoons \frac{1}{2}I_2 + 3H_2O$	+1.19		
$O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O_2$	+0.68		

(i)	Use the data to show that the separate reactions of H ₂ O ₂ with I	O_3^-	and wit	hI_2	are	both
	feasible under standard conditions.					

	In your answer, give the equation for the reaction of H_2O_2 with I_2 .	
	10	
	(3)	
		[3]
(ii)	Write the overall equation for the decomposition of $\rm H_2O_2$ catalysed by acidified $\rm IO_3^-$.	
		[1]

(d) A student collects some data for the reaction of $\rm H_2O_2$ with acidified $\rm IO_3^-$, as shown in the table.

experiment	[H ₂ O ₂] /mol dm ⁻³	[IO ₃ -] /moldm-3	[H ⁺] /moldm ⁻³	initial rate of reaction /moldm ⁻³ s ⁻¹
1	0.0500	0.0700	0.025	1.47 × 10 ⁻⁵
2	0.100	0.0700	0.050	2.94 × 10 ⁻⁵
3	0.100	0.140	0.025	5.88 × 10 ⁻⁵
4	0.150	0.140	0.025	8.82 × 10 ⁻⁵

(i)	Use the data to determine the order of reaction with respect to $[H_2O_2]$, $[IO_3^-]$ and $[H^+]$.
	Show your reasoning.
	order with respect to [H ₂ O ₂] =
	, 29
	order with respect to [IO ₃ ⁻] =
	order with respect to [H*] =
	[3
(ii)	Use your answer to (d)(i) to write the rate equation for this reaction.
	rato -

(iii)		Calculate the value of the rate constant, k , using data from experiment 4 and your answer to (d)(ii) .
		Give the units of <i>k</i> .
		k =
		units =[2]
(e)	Pb(IO ₃) ₂ is only sparingly soluble in water at 25 °C.
	The	e solubility product, $K_{\rm sp}$, of Pb(IO ₃) ₂ is 3.69 × 10 ⁻¹³ mol ³ dm ⁻⁹ at 25 °C.
	(i)	Write an expression for the solubility product of Pb(IO ₃) ₂ .
		$K_{\rm sp}$ =
	(ii)	Calculate the solubility, in mol dm ⁻³ , of Pb(IO ₃) ₂ at 25 °C.
		solubility = mol dm ⁻³ [2]

(f) NH₄IO₃ is an unstable compound that readily decomposes when warmed. The decomposition reaction is shown.

$$\mathrm{NH_4IO_3(s)} \ \to \ \tfrac{1}{2}\mathrm{N_2(g)} \ + \ \tfrac{1}{2}\mathrm{O_2(g)} \ + \ \tfrac{1}{2}\mathrm{I_2(g)} \ + \ 2\mathrm{H_2O(l)} \qquad \Delta H = -154.6 \, \mathrm{kJ \, mol^{-1}}$$

Use the data in the table to calculate the entropy change of reaction, ΔS , of the decomposition of $NH_4IO_3(s)$.

compound	S/JK ⁻¹ mol ⁻¹					
NH ₄ IO ₃ (s)	42					
N ₂ (g)	192					
O ₂ (g)	205					
$I_2(g)$	261					
H ₂ O(I)	70					
$\Delta \mathcal{S}$ =						
e data in (f) and	your answer to	(f)(i).				

$\Delta S =$	 J K ⁻¹ mol ⁻¹	[2]
<u> </u>	 011 11101	[-]

This reaction is feasible at all temperatures.

Explain why, using the data in (f) and your answer to (f)(i).

[Total: 18]

4. June/2021/Paper_41/No.8

(a) The sketch graph for the titration of ethanoic acid, CH₃CO₂H, with sodium hydroxide is shown.

(i) In the region circled on the graph, identify the **two** organic species that are present in the solution. Explain why the pH of the mixture only changes slowly and gradually in this region when sodium hydroxide is being added.

two species present		
	631	
	0	[3]

(ii) The equivalence point in this acid-base titration is where the two solutions have been mixed in exactly equal molar proportion.

Suggest why the pH is greater than 7 at the equivalence point in this titration.

(b) An impure sample of ammonium vanadate(V), NH₄VO₃, with mass 0.150 g, is dissolved in an excess of dilute acid.

In this solution all vanadium is present as VO₂+ ions. An excess of zinc powder is added to the solution and all the VO₂⁺ ions are reduced to V²⁺ ions. The mixture is filtered to remove any remaining zinc powder.

$$VO_2^+ + 4H^+ + 3e^- \rightarrow V^{2+} + 2H_2O$$

When the resulting solution is titrated, 20.10 cm 3 of 0.0250 mol dm $^{-3}$ acidified MnO $_4^-$ oxidises all V²⁺ ions back to VO₂⁺ ions.

$$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$$

Palpa Califilation Calculate the percentage by mass of NH₄VO₃ in the 0.150 g impure sample of NH₄VO₃.

Give your answer to three significant figures.

$$[M_r: NH_4VO_3, 116.9]$$

percentage by mass of $NH_4VO_3 = \dots$ [3]

[Total: 7]