Further aspects of Equilibria - 2021 1. Nov/2021/Paper 41/No.2 Solution \mathbf{Y} is hydrochloric acid, HCl(aq). Solution \mathbf{Z} is aqueous 4-chlorobutanoic acid, $Cl(CH_2)_3CO_2H(aq)$. The p K_a of $Cl(CH_2)_3CO_2H(aq)$ is 4.52. The pH of both solutions is 4.00. (a) (i) Write an expression for the K_a of $Cl(CH_2)_3CO_2H(aq)$. $K_a =$ [1] (ii) Write a mathematical expression to describe the relationship between $K_{\rm a}$ and p $K_{\rm a}$[1] (iii) Calculate [H⁺] in solutions Y and Z. [H⁺] = mol dm⁻³ [1 (iv) Calculate the ratio $\frac{[HCl]}{[Cl(CH_2)_3CO_2H]}$ dissolved in solution **Z** | (b) | A buffer solution of pH 5.00 is produced by adding sodium propanoate to $5.00\mathrm{g}$ of propanoic acid in $100\mathrm{cm}^3$ of distilled water. | |-----|--| | | Calculate the mass of sodium propanoate that must be used to produce this buffer solution. The $K_{\rm a}$ of propanoic acid is $1.35\times 10^{-5}{\rm moldm^{-3}}$. | | | [<i>M</i> _r : propanoic acid, 74.0; sodium propanoate, 96.0] | | | | | | | | | | | | | | | mass of sodium propanoate = g [3 | | (c) | Some dilute sulfuric acid is mixed with a small sample of the buffer solution described in (b) The final pH of the mixture is close to 1. | | | Explain this observation. | | | | | | | | | [2] | | | | | | | | Nov/2021/Paper 42/No.2 | 2. | Nov | /2021 | /Paper | 42 | /No.2 | |--|----|-----|-------|--------|----|-------| |--|----|-----|-------|--------|----|-------| Ethoxyethane, $C_2H_5OC_2H_5$, can dissolve both in water and in octan-1-ol. The expression and numerical value for the partition coefficient of ethoxyethane between water and octan-1-ol are given. Water and octan-1-ol are immiscible. $$K_{pc} = \frac{\text{concentration of } C_2H_5OC_2H_5 \text{ in octan-1-ol}}{\text{concentration of } C_2H_5OC_2H_5 \text{ in water}} = 6.760 \text{ at } 20 \,^{\circ}\text{C}$$ | (a) | | an experiment, octan-1-ol at 20 °C is added to a solution of ethoxyethane in water at 20 °C. e mixture is analysed immediately and a value of $K_{\rm pc}$ is calculated. | |-----|------|---| | | The | e calculation is performed correctly; the value calculated is 5.625. | | | Exp | plain why the value calculated is less than 6.760. | | | | | | | | [2] | | | | | | (b) | A so | econd experiment is performed and the value of K_{pc} is found to be 6.760. The concentration ethoxyethane in the octan-1-ol layer is $7.62 \mathrm{g}\mathrm{dm}^{-3}$. | | | (i) | Calculate the concentration, in g dm ⁻³ , of ethoxyethane in the aqueous layer. | | | | gdm ⁻³ [1] | | | (ii) | 100 cm³ of the octan-1-ol layer is taken and shaken with 100 cm³ of water. | | | | Calculate the maximum amount, in mol, of ethoxyethane that can be extracted into the water. | | | | | | | | | | | | | mol [3] | (c) | | aqueous solution of lead(II) nitrate is mixed with an aqueous solution of sodium iodide. A ow precipitate of lead(II) iodide is formed and is filtered out, leaving solution ${\bf X}$. | |-----|------|--| | | The | e concentration of Pb ²⁺ in solution X is 5.68×10^{-3} mol dm ⁻³ . | | | The | e concentration of I^- in solution X is $4.20 \times 10^{-4} \text{mol dm}^{-3}$. | | | (i) | Use these data to calculate a value for the solubility product, \mathcal{K}_{sp} , of lead(II) iodide. | | | | State the units of $K_{\rm sp}$. | | | | | | | | | | | | | | | | $\mathcal{K}_{sp} = \dots$ | | | | units =[2] | | | (ii) | Potassium iodide is very soluble in water. | | | | Describe and explain what is seen if a few drops of saturated potassium iodide solution are added to a portion of solution X . | | | | | | | | [2] | | | | [Total: 10] | **3.** March/2021/Paper_42/No.3 lodates are compounds that contain the ${\rm IO_3^-}$ anion. (a) The IO_3^- anion is shown. | | Explain, with reference to the qualitative model of electron-pair repulsion, why the ${\rm IO_3^-}$ anion has a pyramidal shape. | |-----|---| | | | | | <u> </u> | | | | | | | | (b) | The reaction of iodine and hot aqueous sodium hydroxide is similar to that of chlorine and hot aqueous sodium hydroxide. Sodium iodate, NaIO ₃ , is formed as one of the products. | | | | | | Suggest an equation for the reaction of iodine and hot aqueous sodium hydroxide. | | | | | | | (c) The decomposition of hydrogen peroxide, H_2O_2 , is catalysed by acidified IO_3^- . $\rm H_2O_2$ reduces acidified $\rm IO_3^-$ as shown. $$5\mathrm{H_2O_2} \ + \ 2\mathrm{H^+} \ + \ 2\mathrm{IO_3^-} \ \rightarrow \ \mathrm{I_2} \ + \ 5\mathrm{O_2} \ + \ 6\mathrm{H_2O}$$ This reaction is followed by the oxidation of $\rm I_2$ by $\rm H_2O_2$. | half-equation | E°/V | | | |--|-------|--|--| | $H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$ | +1.77 | | | | $IO_3^- + 6H^+ + 5e^- \rightleftharpoons \frac{1}{2}I_2 + 3H_2O$ | +1.19 | | | | $O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O_2$ | +0.68 | | | | (i) | Use the data to show that the separate reactions of H ₂ O ₂ with I | O_3^- | and wit | hI_2 | are | both | |-----|--|---------|---------|--------|-----|------| | | feasible under standard conditions. | | | | | | | | In your answer, give the equation for the reaction of H_2O_2 with I_2 . | | |------|--|-----| | | 10 | | | | | | | | (3) | | | | | | | | | [3] | | (ii) | Write the overall equation for the decomposition of $\rm H_2O_2$ catalysed by acidified $\rm IO_3^-$. | | | | | [1] | (d) A student collects some data for the reaction of $\rm H_2O_2$ with acidified $\rm IO_3^-$, as shown in the table. | experiment | [H ₂ O ₂]
/mol dm ⁻³ | [IO ₃ -]
/moldm-3 | [H ⁺]
/moldm ⁻³ | initial rate of reaction
/moldm ⁻³ s ⁻¹ | |------------|---|---------------------------------|---|--| | 1 | 0.0500 | 0.0700 | 0.025 | 1.47 × 10 ⁻⁵ | | 2 | 0.100 | 0.0700 | 0.050 | 2.94 × 10 ⁻⁵ | | 3 | 0.100 | 0.140 | 0.025 | 5.88 × 10 ⁻⁵ | | 4 | 0.150 | 0.140 | 0.025 | 8.82 × 10 ⁻⁵ | | (i) | Use the data to determine the order of reaction with respect to $[H_2O_2]$, $[IO_3^-]$ and $[H^+]$. | |------|---| | | Show your reasoning. | | | order with respect to [H ₂ O ₂] = | | | , 29 | | | | | | | | | order with respect to [IO ₃ ⁻] = | | | | | | | | | | | | order with respect to [H*] = | | | | | | | | | | | | [3 | | (ii) | Use your answer to (d)(i) to write the rate equation for this reaction. | | | rato - | | (iii) | | Calculate the value of the rate constant, k , using data from experiment 4 and your answer to (d)(ii) . | |-------|------|---| | | | Give the units of <i>k</i> . | | | | | | | | | | | | k = | | | | units =[2] | | (e) | Pb(| IO ₃) ₂ is only sparingly soluble in water at 25 °C. | | | The | e solubility product, $K_{\rm sp}$, of Pb(IO ₃) ₂ is 3.69 × 10 ⁻¹³ mol ³ dm ⁻⁹ at 25 °C. | | | (i) | Write an expression for the solubility product of Pb(IO ₃) ₂ . | | | | $K_{\rm sp}$ = | | | | | | | (ii) | Calculate the solubility, in mol dm ⁻³ , of Pb(IO ₃) ₂ at 25 °C. | | | | solubility = mol dm ⁻³ [2] | (f) NH₄IO₃ is an unstable compound that readily decomposes when warmed. The decomposition reaction is shown. $$\mathrm{NH_4IO_3(s)} \ \to \ \tfrac{1}{2}\mathrm{N_2(g)} \ + \ \tfrac{1}{2}\mathrm{O_2(g)} \ + \ \tfrac{1}{2}\mathrm{I_2(g)} \ + \ 2\mathrm{H_2O(l)} \qquad \Delta H = -154.6 \, \mathrm{kJ \, mol^{-1}}$$ Use the data in the table to calculate the entropy change of reaction, ΔS , of the decomposition of $NH_4IO_3(s)$. | compound | S/JK ⁻¹ mol ⁻¹ | | | | | | |-------------------------------------|--------------------------------------|---------|--|--|--|--| | NH ₄ IO ₃ (s) | 42 | | | | | | | N ₂ (g) | 192 | | | | | | | O ₂ (g) | 205 | | | | | | | $I_2(g)$ | 261 | | | | | | | H ₂ O(I) | 70 | | | | | | | $\Delta \mathcal{S}$ = | | | | | | | | e data in (f) and | your answer to | (f)(i). | | | | | | $\Delta S =$ |
J K ⁻¹ mol ⁻¹ | [2] | |--------------|---|-----| | <u> </u> |
011 11101 | [-] | This reaction is feasible at all temperatures. Explain why, using the data in (f) and your answer to (f)(i). [Total: 18] ## **4.** June/2021/Paper_41/No.8 (a) The sketch graph for the titration of ethanoic acid, CH₃CO₂H, with sodium hydroxide is shown. (i) In the region circled on the graph, identify the **two** organic species that are present in the solution. Explain why the pH of the mixture only changes slowly and gradually in this region when sodium hydroxide is being added. | two species present | | | |---------------------|-----|-----| | | | | | | 631 | | | | | | | | 0 | [3] | (ii) The equivalence point in this acid-base titration is where the two solutions have been mixed in exactly equal molar proportion. Suggest why the pH is greater than 7 at the equivalence point in this titration. (b) An impure sample of ammonium vanadate(V), NH₄VO₃, with mass 0.150 g, is dissolved in an excess of dilute acid. In this solution all vanadium is present as VO₂+ ions. An excess of zinc powder is added to the solution and all the VO₂⁺ ions are reduced to V²⁺ ions. The mixture is filtered to remove any remaining zinc powder. $$VO_2^+ + 4H^+ + 3e^- \rightarrow V^{2+} + 2H_2O$$ When the resulting solution is titrated, 20.10 cm 3 of 0.0250 mol dm $^{-3}$ acidified MnO $_4^-$ oxidises all V²⁺ ions back to VO₂⁺ ions. $$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$$ Palpa Califilation Calculate the percentage by mass of NH₄VO₃ in the 0.150 g impure sample of NH₄VO₃. Give your answer to three significant figures. $$[M_r: NH_4VO_3, 116.9]$$ percentage by mass of $NH_4VO_3 = \dots$ [3] [Total: 7]