Hydrocarbons - 2021 ## 1. March/2021/Paper_42/No.5 (a) Carboplatin and satraplatin are used as anticancer drugs instead of cisplatin. | carboplatin | satraplatin | |------------------|---| | ONH ₃ | Cl.,, I NH ₃ Cl N H ₂ | | (1) | Describe the action of cisplatin as an anticancer drug. | |-------|---| | | | | | [2] | | (ii) | Suggest the geometry of the platinum centre in the carboplatin complex. [1] | | (iii) | Suggest why carboplatin does not show cis-trans isomerism. | | | [1] | | (iv) | Satraplatin is a neutral complex, containing the ligands $CH_3CO_2^-$, $C_6H_{11}NH_2$, Cl^- and NH_3 . | | | Deduce the oxidation state of platinum in satraplatin. [1] | (b) Compound M is made from 1,3-dimethylbenzene in a two-step synthesis. (i) Draw the structure of L. (iv) A student investigates a possible synthesis of **M** directly from benzene using $COCl_2$ in the presence of an $AlCl_3$ catalyst. Benzene initially reacts with $COCl_2$ as shown. reaction 1 $$COCl_2 + AlCl_3 \rightarrow AlCl_4 + Cl - \overset{+}{C} = O$$ reaction 2 $$C_6H_6 + Cl - \overset{+}{C} = O \rightarrow C_6H_5COCl + H^+$$ Reaction 2 is the electrophilic substitution of $Cl-\dot{C}=O$ for H^{+} in benzene. Suggest a mechanism for reaction 2.