Reaction Kinetics - 2021

1. March/2021/Paper_42/No.3

lodates are compounds that contain the $\mathrm{IO_3}^-$ anion.

(a) The ${\rm IO_3^-}$ anion is shown.

	Explain, with reference to the qualitative model of electron-pair repulsion, why the ${\rm IO_3}^-$ anion has a pyramidal shape.
	[1]
b)	The reaction of iodine and hot aqueous sodium hydroxide is similar to that of chlorine and hot aqueous sodium hydroxide. Sodium iodate, $NaIO_3$, is formed as one of the products.
	Suggest an equation for the reaction of iodine and hot aqueous sodium hydroxide. [1]
	Palpa

(c) The decomposition of hydrogen peroxide, $\rm H_2O_2$, is catalysed by acidified $\rm IO_3^-$.

 $\rm H_2O_2$ reduces acidified $\rm IO_3^-$ as shown.

$$5 H_2 O_2 \ + \ 2 H^+ \ + \ 2 I O_3^- \ \rightarrow \ I_2 \ + \ 5 O_2 \ + \ 6 H_2 O$$

This reaction is followed by the oxidation of ${\rm I_2}$ by ${\rm H_2O_2}$.

half-equation	E°/V
$H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$	+1.77
$IO_3^- + 6H^+ + 5e^- \rightleftharpoons \frac{1}{2}I_2^- + 3H_2O$	+1.19
$O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O_2$	+0.68

(i)	Use the data to show that the separate reactions of H ₂ O ₂ v	with	IO_3^-	and w	ith I ₂	are	both
	feasible under standard conditions.		1		_		

	In your answer, give the equation for the reaction of H_2O_2 with I_2 .
	[3]
(ii)	Write the overall equation for the decomposition of $\rm H_2O_2$ catalysed by acidified $\rm IO_3^-$.
	[1]

(d) A student collects some data for the reaction of H_2O_2 with acidified IO_3^- , as shown in the table.

experiment	[H ₂ O ₂] /mol dm ⁻³	[IO ₃ -] /moldm-3	[H ⁺] /moldm ⁻³	initial rate of reaction /moldm ⁻³ s ⁻¹
1	0.0500	0.0700	0.025	1.47 × 10 ⁻⁵
2	0.100	0.0700	0.050	2.94 × 10 ⁻⁵
3	0.100	0.140	0.025	5.88 × 10 ⁻⁵
4	0.150	0.140	0.025	8.82 × 10 ⁻⁵

(i)	Use the data to determine the order of reaction with respect to $[H_2O_2]$, $[IO_3^-]$ and $[H^+]$.	
	Show your reasoning.	
	order with respect to [H ₂ O ₂] =	
	order with respect to $[IO_3^-]$ =	
	order with respect to [H ⁺] =	
	•	
		[3
(ii)	Use your answer to (d)(i) to write the rate equation for this reaction.	
	rate =	. [1

(11)	ose your answer to (d)(i) to write the rate equation for this reaction.	
	rate =	[′

	(iii)	Calculate the value of the rate constant, k , using data from experiment 4 and your answ to (d)(ii) .	/er
		Give the units of <i>k</i> .	
		k = units =	 [2]
(e)		IO ₃) ₂ is only sparingly soluble in water at 25 °C.	
		e solubility product, $K_{\rm sp}$, of Pb(IO ₃) ₂ is 3.69×10^{-13} mol ³ dm ⁻⁹ at 25 °C.	
	(i)	Write an expression for the solubility product of $Pb(IO_3)_2$. $ \mathcal{K}_{sp} =$	[1]
	(ii)	Calculate the solubility, in mol dm ⁻³ , of Pb(IO ₃) ₂ at 25 °C.	
		solubility = mol dm ⁻³	[2]

(f) NH₄IO₃ is an unstable compound that readily decomposes when warmed. The decomposition reaction is shown.

$$NH_4IO_3(s) \rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) + \frac{1}{2}I_2(g) + 2H_2O(I)$$
 $\Delta H = -154.6 \text{ kJ mol}^{-1}$

Use the data in the table to calculate the entropy change of reaction, ΔS , of the decomposition of $NH_4IO_3(s)$.

compound $NH_4IO_3(s)$ $N_2(g)$ $O_2(g)$	S/JK ⁻¹ mol ⁻¹ 42 192 205	
N ₂ (g)	192	
O ₂ (a)	205	
- 2(3)		
I ₂ (g)	261	
H ₂ O(I)	70	O.
ble at all temperat	ΔS =	=

ΔS =	 J K ⁻¹ mol ⁻¹	[2]
∆o −	 317 11101	14

This reaction is feasible at all temperatures. (ii)

Explain why, using the data in (f) and your answer to (f)(i).

[Total: 18]

2. June/2021/Paper_41/No.5

Dinitrogen pentoxide, N_2O_5 , is dissolved in an inert solvent (solv) and the rate of decomposition of N_2O_5 is investigated. This reaction produces nitrogen dioxide, which remains in solution, and oxygen gas.

$$N_2O_5(solv) \rightarrow 2NO_2(solv) + \frac{1}{2}O_2(g)$$

(a) Suggest what measurements could be used to follow the rate of this reaction from the given information.

(b) In a separate experiment, the rate of the decomposition of N₂O₅(g) is investigated.

$$N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$$

The graph shows the results obtained.

The reaction is first order with respect to N_2O_5 . This can be confirmed from the graph using half-lives.

(i) Explain the term half-life of a reaction.

.....

		half-life = s [1]
	(iii)	Suggest the effect on the half-life of this reaction if the initial concentration of $\rm N_2O_5$ is halved.
		[1]
(c)	(i)	Use the graph in 5(b) to determine the rate of reaction at 200 s. Show your working.
		rate =units =
	Th	e rate equation for this reaction is shown.
		$rate = k[N_2O_5]$
	(ii)	Use your answer to (c)(i) to calculate the value of the rate constant, <i>k</i> , for this reaction and state its units.
		k = units [1]
(d)	Nit	rogen dioxide reacts with ozone, O ₃ , as shown.
		$2NO_2 + O_3 \rightarrow N_2O_5 + O_2$
	Th	e rate equation for this reaction is rate = $k[NO_2][O_3]$.
	Su	ggest a possible two-step mechanism for this reaction.
		ro1
		[2]
		[Total: 9]

(ii) Determine the half-life of this reaction. Show your working on the graph.

3. June/2021/Paper_42/No.7

(a) In aqueous solution, chlorine dioxide, ClO_2 , reacts with hydroxide ions as shown.

$$2\text{C}l\text{O}_2 \text{ + 2OH}^- \rightarrow \text{C}l\text{O}_3^- \text{ + C}l\text{O}_2^- \text{ + H}_2\text{O}$$

A series of experiments is carried out using different concentrations of ${\rm C}l{\rm O}_2$ and ${\rm OH}^-$. The table shows the results obtained.

experiment	$[ClO_2]$ /moldm $^{-3}$	[OH ⁻] /moldm ⁻³	initial rate /moldm ⁻³ min ⁻¹
1	0.020	0.030	7.20 × 10 ⁻⁴
2	0.020	0.120	2.88 × 10 ⁻³
3	0.050	0.030	4.50×10^{-3}

(i)	Explain the term <i>order of reaction</i> .
(ii)	Use the data in the table to determine the order of reaction with respect to each reactant,
	ClO₂ and OH⁻. Explain your reasoning.
(iii)	Use your answer to (a)(ii) to construct the rate equation for this reaction.
	rate =[1]

(iv) Use your rate equation and the data from experiment 1 to calculate the rate constant, k, for this reaction. Include the units of k.

k = units [2]

(b) The decomposition of benzenediazonium ions, $C_6H_5N_2^+$, using a large excess of water, is a first-order reaction.

The graph shows the results obtained.

(i) Draw the structure of the organic product formed in this reaction.

[1]

(ii) Use the graph to determine the rate of reaction at 100 s. Show your working.

rate = $mol dm^{-3} s^{-1}$ [1]

(c) Sketch a concentration-time graph for a zero-order reaction.

Use your graph to suggest how successive half-lives for a zero-order reaction vary as the concentration of a reactant decreases. Indicate this by placing a tick (\checkmark) in the appropriate box in the table.

successive half-lives decrease no change in successive half-lives increase

[1]

[Total: 9]