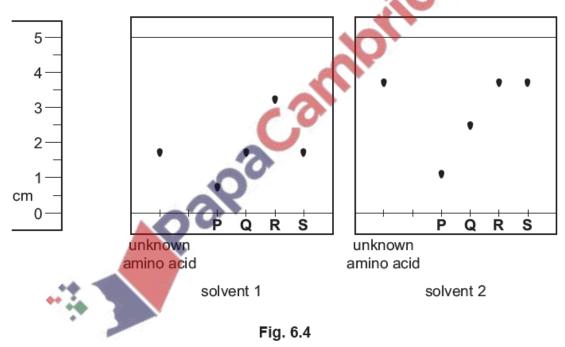

Analytical techniques - 2022 June A2 Chemistry 9701

1. June/2022/Paper_41/No.6(b, f, g)

(b) Asparagine is an amino acid that contains a chiral carbon atom and displays stereoisomerism.

Separate samples of asparagine are dissolved in $CDCl_3$ and analysed using carbon-13 and proton (¹H) NMR spectroscopy.

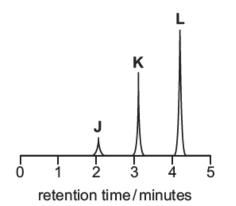
Predict the number of peaks seen in the carbon-13 and proton (1H) NMR spectra of asparagine.


	carbon-13 NMR	proton (¹ H) NMR	-
number of pea	ks		
	Papacat		[1]
**			

- (f) Thin-layer and gas-liquid chromatography can be used to analyse mixtures of substances. Each type of chromatography makes use of a stationary phase and a mobile phase.
 - (i) Complete Table 6.1 with an example of each of these.

Table 6.1

	stationary phase	mobile phase	
thin-layer chromatography			
gas-liquid chromatography			


(ii) An unknown amino acid is analysed using thin-layer chromatography. Two chromatographs of the unknown amino acid and four reference amino acids, P, Q, R and S, are obtained using two different solvents.

Identify the unknown amino acid. Justify your answer.

[1]

(g) A mixture containing three organic compounds is analysed by gas chromatography and mass spectrometry. The gas chromatogram is shown.

peak	J	κ	L
area/mm ²	8	44	58

Fig. 6.5

The area underneath each peak is proportional to the mass of the respective compound in the mixture.

The concentration of **K** in the mixture is 5.52×10^{-2} g dm⁻³

Calculate the concentration, in moldm⁻³, of compound L in the mixture. [*M*_r: **L**, 116] apace

2. June/2022/Paper_42/No.7

(a) State the uses of TMS and D₂O in NMR spectroscopy.

TMS	
D ₂ O	
2	[1]

- (b) The three isomeric ketones with molecular formula $C_5H_{10}O$ are:
 - pentan-2-one
 - pentan-3-one
 - 3-methylbutanone.
 - (i) Complete Table 7.1 to show the number of peaks observed in the proton (¹H) NMR spectrum and in the carbon-13 NMR spectrum for each compound listed.

Table 7.1

		.01
ketone	number of peaks observed in the proton (¹ H) NMR spectrum	number of peaks observed in the carbon-13 NMR spectrum
pentan-2-one		
pentan-3-one	2	
3-methylbutanone		

(ii) State all the ketones with molecular formula $C_5H_{10}O$ that have:

a doublet in their proton (1H) NMR spectrum

a singlet in their proton (¹H) NMR spectrum.

(c) Cortisone, $C_{21}H_{28}O_5$, is a naturally occurring chemical that contains chiral carbon atoms.

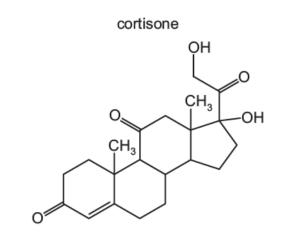


Fig. 7.1

	Fig. 7.1
(i)	Deduce the number of chiral carbon atoms in one molecule of cortisone.
(ii)	Cortisone is reacted with an excess of NaBH ₄ .
	State the molecular formula of the organic compound formed.
(iii)	Cortisone is an optically active molecule
	Explain what is meant by optically active.
	[1]
	[Total: 8]