Chemical energetics - 2022 June A2 Chemistry 9701

4			-		
I.	June/	2022	'Paper	41/No.3	l (b- e

(b)	Describe what is	observed	when	magnesium	and	barium	are	reacted	separately	with	an
	excess of dilute su	ulfuric acid									

magnesium	
barium	
	[1]

(c) The solubility product, $K_{\rm sp}$, of BaSO $_4$ is $1.08\times 10^{-10}\,{\rm mol^2\,dm^{-6}}$ at 298 K.

Calculate the solubility of BaSO₄ in g per 100 cm³ of solution.

(d) (i) The equation for the formation of a gaseous sulfate ion is shown.

$$S(s) + 2O_2(g) + 2e^- \rightarrow SO_4^{2-}(g)$$
 $\Delta H = \Delta H_f^{\bullet} \text{ of } SO_4^{2-}(g)$

Calculate the standard enthalpy change of formation, $\Delta H_{\rm f}^{\rm e}$, of ${\rm SO_4}^{2-}({\rm g})$. It may be helpful to draw a labelled energy cycle. Use relevant data from Table 1.1 in your calculations.

Table 1.1

energy change	value/kJ mol ⁻¹
lattice energy of barium sulfate, BaSO ₄ (s)	-2469
standard enthalpy change of formation of barium sulfate	-1473
standard enthalpy change of atomisation of barium	+180
first ionisation energy of barium	+503
second ionisation energy of barium	+965
standard enthalpy change of atomisation of sulfur	+279
standard enthalpy change for $S(g) \rightarrow S^{2-}(g)$	+440
standard enthalpy change for $O(g) \rightarrow O^{2-}(g)$	+657
O=O bond energy	+496
-: A Palpacal	

- (ii) Suggest how the lattice energy of BaSO₄(s) differs from the lattice energy of Cs₂SO₄(s). Explain your answer.
- (e) The reaction of solid hydrated barium hydroxide, Ba(OH)₂•8H₂O, with ammonium salts is endothermic.
 - (i) Calculate the **minimum** temperature at which the reaction of Ba(OH)₂•8H₂O with NH₄NO₃ becomes feasible. Show all your working.

$${\sf Ba}({\sf OH})_2 \bullet {\sf 8H}_2{\sf O}({\sf s}) \ + \ 2{\sf NH}_4{\sf NO}_3({\sf s}) \ \to \ 2{\sf NH}_3({\sf g}) \ + \ {\sf Ba}({\sf NO}_3)_2({\sf s}) \ + \ 10{\sf H}_2{\sf O}({\sf I}) \ \Delta H_r^{\bullet} = +132\,{\sf kJ\,mol^{-1}} \ \Delta S^{\circ} = +616\,{\sf J\,K^{-1}\,mol^{-1}}$$

(ii) Barium hydroxide reacts readily with ammonium chloride on mixing at room temperature.

$${\rm Ba(OH)_2 \cdot 8H_2O(s)} \ + \ 2{\rm NH_4C} \ l(s) \ \rightarrow \ 2{\rm NH_3(g)} \ + \ {\rm BaC} \ l_2 \cdot 2{\rm H_2O(s)} \ + \ 8{\rm H_2O(l)} \\ \ \Delta H_r^{\bullet} = \ + \ 133 \ k \ J \ mol^{-1} \ + \ 2{\rm NH_3(g)} \ + \ 2{\rm NH_3(g$$

Some relevant standard entropies are given in Table 1.2.

Table 1.2

substance	Ba(OH) ₂ •8H ₂ O(s)	NH ₄ Cl(s)	NH ₃ (g)	BaCl ₂ •2H ₂ O(s)	H ₂ O(I)
S ^o /JK ⁻¹ mol ⁻¹	427	95	192	203	70

Calculate the standard Gibbs free energy change, ΔG° , for this reaction at 25 °C.

$$\Delta G^{\circ} = kJ mol^{-1}$$
 [3]

2.	June/	2022/	[/] Paper_	_42/No.1(b)	
----	-------	-------	---------------------	-------------	--

- **(b)** The solubility of Be(OH)₂ in water is $2.40 \times 10^{-6} \, \text{g dm}^{-3}$ at 298 K.
 - (i) Write an expression for the solubility product, K_{sp} , of Be(OH)₂ and state its units.

$$K_{sp} =$$

units =[2]

(ii) Calculate the numerical value of $K_{\rm sp}$ for Be(OH)₂ at 298 K.

ine/202	2/Paper_42/No.3
(a) (i)	Define first electron affinity.
	[2]
(ii)	The first electron affinity of an atom is usually an exothermic process, whereas the second electron affinity is an endothermic process.
	Suggest why.
	[1]
(iii)	Describe the general trend in first electron affinities for C1, Br and I. Explain your answer.
	[2]
	[2]

(b) Table 3.1 shows energy changes to be used in this question and in (c).

Table 3.1

energy change	value/kJ mol ⁻¹
standard enthalpy change of atomisation of zinc	+131
first ionisation energy of zinc	+906
second ionisation energy of zinc	+1733
standard enthalpy change of formation of ZnI ₂ (s)	-208
lattice energy, $\Delta H_{\text{latt}}^{\bullet}$, of zinc iodide, $\text{ZnI}_2(s)$	-2605
first ionisation energy of iodine	+1008
second ionisation energy of iodine	+1846
I–I bond energy	+151
enthalpy change of sublimation of iodine, $I_2(s) \rightarrow I_2(g)$	+62

Calculate the first electron affinity for iodine. Use relevant data from Table 3.1 in your lt may be helpful to draw a labelled energy cycle.	our working.
Show all working.	

first electron affinity for iodine =kJ mol⁻¹ [3]

(c) Predict how $\Delta H_{\text{latt}}^{\bullet}$ of $\text{CdI}_2(s)$ differs from $\Delta H_{\text{latt}}^{\bullet}$ of $\text{ZnI}_2(s)$. Place a tick (\checkmark) in the appropriate box in Table 3.2.

Table 3.2

$\Delta H_{\text{latt}}^{\bullet}$ of $\text{CdI}_2(s)$ is less negative than $\Delta H_{\text{latt}}^{\bullet}$ of $\text{ZnI}_2(s)$	$\Delta H_{\mathrm{latt}}^{\Phi}$ of $\mathrm{CdI}_2(\mathrm{s})$ is the same as $\Delta H_{\mathrm{latt}}^{\Phi}$ of $\mathrm{ZnI}_2(\mathrm{s})$	$\Delta H_{\mathrm{latt}}^{\Phi}$ of $\mathrm{CdI}_2(\mathrm{s})$ is more negative than $\Delta H_{\mathrm{latt}}^{\Phi}$ of $\mathrm{ZnI}_2(\mathrm{s})$

Explain your answer.	
	[1]

[Total: 9]

4. June/2022/Paper_42/No.4(a, b)

(a) Calcium carbonate decomposes on heating.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Table 4.1 shows the values of the Gibbs free energy change, ΔG° , for this reaction at various temperatures.

Table 4.1

T/K	∆G°/kJmol⁻¹
1050	9.9
1085	4.3
1120	-1.3
1148	-5.8
1176	-10.3

Assume the standard enthalpy change, ΔH° , and the standard entropy change, ΔS° , for this reaction remain constant over this temperature range.

(i) Use the data in Table 4.1 to plot a graph of ΔG° against T on the grid.

(ii) Calculate the gradient of your graph. Determine the ∆S^e in J K⁻¹ mol⁻¹ for this reaction. Show all working.

$$\Delta S^{e} = J K^{-1} mol^{-1}$$
 [2]

(b)		Group 1 hydrogencarbonates, MHCO ₃ , decompose on gentle heating to give the correspond metal carbonate, carbon dioxide and water vapour.	
	(i)	Write an ionic equation for the decomposition of the hydrogencarbonate ion.	
		[1]	
	(ii)	The thermal stability of Group 1 hydrogencarbonates increases down the group.	
		SuggestanexplanationforthetrendinthermalstabilityoftheGroup1hydrogen carbonates.	
		[2]	
		Palacalitibilities [2]	