Nitrogen compounds - 2022 June A2 Chemistry 9701

1.

		2/Paper_41/No.6(a, c, d, e,)	
(a)	Des	scribe what is meant by a racemic mixture.	
			1]
(c)	The	isoelectric point of asparagine, asn, is at pH 5.4.	
	(i)	Describe the meaning of the term isoelectric point.	
		[1]	1
	/ii\	Draw the structure of asparagine at pH 1.0.	•
	(ii)	Draw the structure of asparagine at pri 1.0.	
		[1]	1
			,

(d) Asparagine can polymerise to form poly(asparagine).

Draw the structure of poly(asparagine), showing **two** repeat units. The peptide linkage should be shown displayed.

(e) The isoelectric point of lysine, lys, is at pH 9.8.

Fig. 6.2

A mixture of the dipeptide lys-asn and its two constituent amino acids, asparagine and lysine, is analysed by electrophoresis using a buffer at pH 5.0. The results obtained are shown in Fig. 6.3.

Fig. 6.3

Suggest identities for the species responsible for spots E, F and G. Explain your answers.

spot	identity
E	
F	
G	

10.

[2]

2. June/2022/Paper_42/No.6(d)

(d) The azo compound Congo Red is used as an acid-base indicator and can be made by the route shown in Fig. 6.2.

In step 3 of this synthesis, compound \mathbf{Y} reacts with compound \mathbf{Z} . Compound \mathbf{Z} is made from compound \mathbf{X} . Assume that the $-SO_3^-Na^+$ groups do not react.

Fig. 6.2

- (i) Suggest structures for compounds X, Y and Z and draw them in the boxes in Fig. 6.2. [3]
- (ii) Give the reagents and conditions for step 1 and step 2.

[3]

3. June/2022/Paper_42/No.9

The structure of cyclohexylamine is shown in Fig. 9.1.

cyclohexylamine

Fig. 9.1

(a)	ompare the relative basicities of ammonia, cyclohexylamine and phenylamine. splain your reasoning.			
	most basic	least basic		
		<u>;(0'</u>		
	Palpa	[3]		

(b) Cyclohexylamine reacts with ethanoyl chloride to form the corresponding amide, L.

Fig. 9.2

(i) Name the mechanism for the reaction shown in Fig. 9.2.

.....[1]

(ii) Complete the mechanism of the reaction between cyclohexylamine and CH₃COC1.

R-NH₂ is used to represent cyclohexylamine.

Include all relevant lone pairs of electrons, curly arrows, charges and partial charges.

[4]

(iii) The reaction between cyclohexylamine and an excess of CH₃COC1 forms compound M. Compound M has the molecular formula C₁₀H₁₇NO₂.

Suggest and draw the structure of M.