Reaction Kinetics - 2022 June A2 Chemistry 9701

1.	June/2022/Paper	_41/No.2(c)
----	-----------------	-------------

(c)	Manganese(IV)	oxide,	MnO ₂ ,	acts	as	а	heterogeneous	catalyst	in	the	decomposition	of
	hydrogen peroxic	de, H₂C),.									

(i)	Explain what is meant by a heterogeneous catalyst.
	[1]
(ii)	Describe the mode of action of a heterogeneous catalyst in a reaction.
	[3]
	a Pacalini
	ogloo.

2. June/2022/Paper_41/No.3(a, b)

(a) The rate of reaction between 2-chloro-2-methylpropane, (CH₃)₃CC*l*, and methanol is investigated. When a large excess of methanol is used, the overall reaction is first order.

$$(CH_3)_3CCl + CH_3OH \rightarrow (CH_3)_3COCH_3 + HCl$$

Fig. 3.1 shows the results obtained.

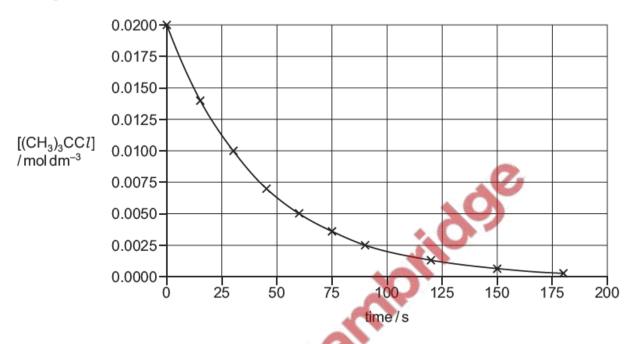
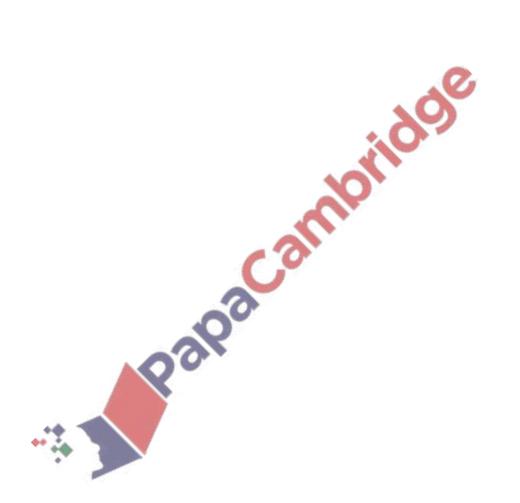


Fig. 3.1


(i) Use the graph to determine the rate of reaction at 40 s. Show all your working.

rate =	 moldm ⁻³ s ⁻¹	[1]

(ii) Use the graph to show that the overall reaction is first order. Explain your answer.

(b) In a different reaction, which is also a first order reaction, 75% of the reactant is consumed in 320s.

Calculate the rate constant, k, for this reaction. State the units for k.

