Analytical techniques - 2023 A2 Chemistry 9701

1. Nov/2023/Paper_9701/41/No.7(d)

Sunset Yellow is an additive used for colouring foods.

A synthetic route for making Sunset Yellow is shown.

Molecules ${\bf E}$ and ${\bf G}$ each contain one $-{\rm SO_3}^-$ group. These groups are unchanged in the formation of Sunset Yellow.

Fig. 7.1

(d) Predict the number of peaks in the carbon-13 NMR spectrum of the Sunset Yellow anion.

2. Nov/2023/Paper_9701/41/No.8(d)

Capsaicin is found in chilli peppers.

You should assume the CH₃O group is unreactive in the reactions involved in this question.

- (d) When capsaicin is treated with reagent **J** under suitable conditions one of the products is methylpropanoic acid, CH₃CH(CH₃)COOH.
 - (i) Identify reagent **J** and any necessary conditions.
 - (ii) There are three different peaks in the proton (¹H) NMR spectrum of CH₃CH(CH₃)COOH in CDC1₃.

Table 8.1

environment of proton	example	chemical shift range δ/ppm
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
alkyl next to aromatic ring	CH ₃ -Ar, -CH ₂ -Ar, >CH-Ar	2.3–3.0
alkyl next to electronegative atom	$\mathrm{CH_3} ext{-O}$, $-\mathrm{CH_2} ext{-O}$, $-\mathrm{CH_2} ext{-C}$ l	3.2–4.0
attached to alkene	=CHR	4.5–6.0
attached to aromatic ring	H–Ar	6.0–9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5–6.0
phenol	Ar–OH	4.5–7.0
carboxylic acid	RCOOH	9.0–13.0

Use Table 8.1 to complete Table 8.2 and state:

- the typical proton (¹H) chemical shift values (δ) for the protons
- the splitting pattern (singlet, doublet, triplet, quartet or multiplet) shown by each peak
- the explanation for the splitting patterns of the CH₃ protons and the CH proton.

Table 8.2

environment	δ/ppm	splitting pattern	explanation for splitting pattern
CH ₃			
СН			
СООН			

3. Nov/2023/Paper_9701/42/No.7

Benzene can be used to make benzoic acid in the two-step process shown in Fig. 7.1.

Fig. 7.1

(a) Give the reagents and conditions for step 1 and step 2.

step 1	4 ()	
step 2		
		[2]

(b) Methylbenzene and benzoic acid each have five different peaks in the carbon (13C) NMR spectrum.

Table 7.1

hybridisation of the carbon atom	environment of carbon atom	example	chemical shift range /ppm
sp ³	alkyl	CH ₃ -, -CH ₂ -, -CH<, >C<	0–50
sp ³	next to alkene/arene	- C -C=C, - C -Ar	25–50
sp ³	next to carbonyl/carboxyl	C –COR, C –O ₂ R	30–65
sp ³	next to halogen	C-X	30–60
sp ³	next to oxygen	C –O	50–70
sp ²	alkene or arene	>C=C<, C C C C	110–160
sp ²	carboxyl	R-COOH, R-COOR	160–185
sp ²	carbonyl	R-CHO, R-CO-R	190–220
sp	nitrile	R-C≡N	100–125

Use Table 7.1 to complete the two sentences to suggest descriptions of these two spectra.

The carbon (¹³C) NMR spectrum of methylbenzene:

- has peak(s) in the chemical shift range of and
- has peak(s) in the chemical shift range of

The carbon (¹³C) NMR spectrum of benzoic acid:

- has peak(s) in the chemical shift range of and
- has peak(s) in the chemical shift range of

[2]

(c) (i) When treated with Cl_2 under suitable conditions, methylbenzene forms compound J.

When treated with $\mathrm{C}l_2$ under **different** conditions with **different** reagents, methylbenzene forms compound \mathbf{K} .

Suggest and draw structures of compounds ${\bf J}$ and ${\bf K}$ in the boxes. The molecular formula of each compound is given.

State the reagents and conditions required to form each product.

to form compound J

(ii) When treated with a chlorine-containing reagent under suitable conditions, benzoic acid forms compound L.

When treated with a different chlorine-containing reagent under different conditions, benzoic acid forms compound M.

Suggest and draw structures of compounds L and M in the boxes. The molecular formula of each product is given.

State the reagents and conditions to form compound **M** from benzoic acid.

.....[3]

[Total: 11]

4. Nov/2023/Paper_9701/42/No.8(b, c)

Lactic acid, $\mathrm{CH_3CH}(\mathrm{OH})\mathrm{COOH}$, is the only monomer needed to form the polymer polylactic acid, PLA.

(b) The proton (1 H) NMR spectrum of CH $_3$ CH(OH)COOH in CDC l_3 is shown in Fig. 8.1. The proton NMR chemical shift ranges are shown in Table 8.1.

Fig. 8.1

Table 8.1

environment of proton	example	chemical shift range δ/ppm
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
alkyl next to aromatic ring	CH ₃ -Ar, -CH ₂ -Ar, >CH-Ar	2.3–3.0
alkyl next to electronegative atom	$\mathrm{CH_3} ext{-O}$, $-\mathrm{CH_2} ext{-O}$, $-\mathrm{CH_2} ext{-C}l$	3.2-4.0
attached to alkene	=CHR	4.5–6.0
attached to aromatic ring	H–Ar	6.0–9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5–6.0
phenol	Ar-OH	4.5–7.0
carboxylic acid	RCOOH	9.0–13.0

(i) Use Fig. 8.1 and Table 8.1 to complete Table 8.2.

Table 8.2

proton environment	chemical shift (δ)	name of splitting pattern
-СООН	00	
⇒ сн	0	
–OH	0	
-CH ₃	8	

[3]

(ii) Name the substance responsible for the peak at $\delta = 0.0$[1] Explain why ${\rm CDC}l_3$ is a better solvent than ${\rm CHC}l_3$ for use in proton NMR.

(c) An impure sample of CH ₃ CH(OH)COOH contains pentan-3-one as the only contami mixture is analysed using gas/liquid chromatography. The pentan-3-one is found to longer retention time than the lactic acid.				
	(i)	Explain what is meant by retention time.		
		[1]		
	(ii)	Suggest suitable substances, or types of substances, that could be used as the mobile and stationary phases.		
		mobile phase		
		stationary phase[1]		
	(iii)	Describe how the percentage composition of the mixture can be determined from the gas/liquid chromatogram.		
		[1]		
		· ii J Palpacalii		

5. June/2023/Paper_9701/41/No.4(d)

Fig. 4.2

Give the systematic name of W.

.....[1]

(d) Complete Table 4.1 to show the number of peaks observed in the carbon-13 NMR spectrum for **W** and **Z**.

Table 4.1

compound	number of peaks observed
W	an.
z	0

[1]

6. June/2023/Paper_9701/41/No.7(e)

(e) Alanine, $\rm H_2NCH(CH_3)COOH$, reacts with methanol to form the ester $\bf G$ under certain conditions.

The proton (1 H) NMR spectrum of **G** dissolved in $\mathrm{D}_{2}\mathrm{O}$ is shown in Fig. 7.3.

Fig. 7.3

Table 7.1

environment of proton	example	chemical shift range, δ/ppm
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
alkyl next to aromatic ring	CH ₃ -Ar, -CH ₂ -Ar, >CH-Ar	2.3–3.0
alkyl next to electronegative atom	CH ₃ -O, -CH ₂ -O, -CH ₂ -C <i>l</i>	3.2-4.0
attached to alkene	=CHR	4.5–6.0
attached to aromatic ring	H–Ar	6.0–9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5–6.0
phenol	Ar-OH	4.5–7.0
carboxylic acid	RCOOH	9.0–13.0
alkyl amine	R-NH-	1.0-5.0
aryl amine	Ar-NH ₂	3.0-6.0
amide	RCONHR	5.0–12.0

(i) Complete Table 7.2 for the proton (¹H) NMR spectrum of **G**.

Table 7.2

chemical shift (δ)	splitting pattern	number of ¹ H atoms responsible for the peak	number of protons on adjacent carbon atoms
1.4			
3.5			
4.0			

(ii)	The proton	(1H) NMR spectrur	n of G dissolved	in CDC1	is obtained.
------	------------	-------------------	-------------------------	---------	--------------

Describe the difference observed between this	spectrum	and	the	proton	NMR	spectrum
in D ₂ O shown in Fig 7.3.	40.0					·

Explain your answer.	
	XO)
	[1
Palpace	

7. June/2023/Paper_9701/42/No.8(c)

(c) The proton (1H) NMR spectrum of compound T, $C_5H_9O_2Cl$, in CDC l_3 is shown in Fig. 8.2.

Fig. 8.2

Table 8.1

environment of proton	example	chemical shift range δ/ppm
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
alkyl next to aromatic ring	CH ₃ -Ar, -CH ₂ -Ar, >CH-Ar	2.3–3.0
alkyl next to electronegative atom	CH ₃ -O, -CH ₂ -O, -CH ₂ -C <i>l</i>	3.2-4.0
attached to alkene	=CHR	4.5–6.0
attached to aromatic ring	H–Ar	6.0–9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5–6.0
phenol	Ar-OH	4.5–7.0
carboxylic acid	RCOOH	9.0–13.0
alkyl amine	R-NH-	1.0-5.0
aryl amine	Ar-NH ₂	3.0-6.0
amide	RCONHR	5.0-12.0

(i) Su sp	iggest why CDC l_3 is used as a solvent instead of CHC l_3 for the proton ($^1\mathrm{H})$ NMR ectrum.			ΛR
 (ii) Co	omplete Table 8.2 for the proton (¹ H)		т.	 [1]
	Table	8.2		
chemical hift δ/ppm	environment of proton	splitting pattern	number of ¹ H atoms responsible for the peak	
1.2				
2.8			40	
3.7			9	
3.9				
(iii) E>	xplain the splitting pattern of the peak	at δ 3.9 ppm.		[4]
	Palpaca			[1]
•				

8. March/2023/Paper_9701/42/No.5(f)

tulobuterol

(f)	(i)	Predict the number of peaks that would be seen in the carbon-13 NMR spectrum of tulobuterol.
		[1]
	(ii)	The proton (1 H) NMR spectrum of tulobuterol dissolved in $\mathrm{D}_{2}\mathrm{O}$ shows peaks in four different types of proton environment.
		The peak for the — CH_2N — environment is a doublet in the chemical shift range $\delta = 2.0-3.0 \text{ppm}$.

Give details for each of the other three peaks in the proton NMR spectrum of tulobuterol, to include:

- chemical shift

- environment of the proton splitting pattern number of ¹H atoms responsible.

Table 5.1 gives information about typical chemical shift values.
Co ^o
10.0
[3]

Table 5.1

environment of proton	example	chemical shift range δ/ppm
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
alkyl next to aromatic ring	CH ₃ -Ar, -CH ₂ -Ar, >CH-Ar	2.3–3.0
alkyl next to electronegative atom	$\begin{array}{c} \mathrm{CH_3-O,-CH_2-O,} \\ \mathrm{-CH_2-C} l \end{array}$	3.2–4.0
attached to alkene	=CHR	4.5–6.0
attached to aromatic ring	H–Ar	6.0-9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5–6.0
phenol	Ar-OH	4.5–7.0
carboxylic acid	RCOOH	9.0-13.0
alkyl amine	R-NH-	1.0-5.0
aryl amine	Ar-NH ₂	3.0-6.0
amide	RCONHR	5.0-12.0

9. March/2023/Paper_9701/42/No.6(a _ c)

A student uses thin-layer chromatography (TLC) to analyse a mixture containing different metal cations. The student repeats the experiment using different solvents.

Fig. 6.1 shows the chromatogram obtained by the student using water as a solvent.

Fig. 6.1

- (a) (i) Suggest a compound that could be used as the stationary phase in this experiment.
 - (ii) Table 6.1 shows the $R_{\rm f}$ values for different metal cations when separated by TLC using water as a solvent.

Table 6.1

Suggest the identity of the cation that causes the spot at M in Fig. 6.1.

Explain your answer.

(D)	The student repeats the experiment using butan-1-or as a solvent.
	The metal cations do not travel as far up the TLC plate in this experiment.
	Suggest why the metal cations do not move as far up the TLC plate with butan-1-ol as a solvent.
	[1]
(c)	The student sprays the TLC plate in Fig. 6.1 with KSCN(aq).
	The colour of some of the spots changes, as some of the metal cations undergo a ligand exchange reaction.
	Identify the ligands involved in the ligand exchange reaction.
	exchanges with
	Palpa.