Equilibria - 2023 A2 Chemistry 9701

		ine $K_{\rm w}$ mathematically by completing the expression.
	K _w	=[1]
(b)	Two	o solutions, V and W , are described.
	•	 V is HCl(aq). W is NaOH(aq). The concentration of HCl in V is the same as the concentration of NaOH in W. The pH values of V and W differ by exactly 11.00 at 298 K.
	(i)	Calculate the concentration of HC1 in V .
		concentration of HC1 in V = mol dm ⁻³ [2
	(ii)	Equal volumes of the two solutions V and W are mixed, giving solution X .
		Name solution X and state its pH.
		solution X[1
	(iii)	A 1 cm 3 sample of 1.0 mol dm $^{-3}$ HNO $_3$ is added to 100 cm 3 of solution X , forming mixture Y
		A 1 cm ³ sample of 1.0 mol dm ⁻³ KOH is added to 100 cm ³ of solution X , forming mixture Z
		Estimate the pH of mixtures Y and Z. No calculations are required.
		mixture Y mixture Z

(c)	(i)	$\mathrm{CH_3CH_2COOH},\mathrm{CH_3CC}\mathit{l_2}\mathrm{COOH}$ and $\mathrm{H_2SO_4}$ are all acidic.		
		Suggest the trend in the relative acid strength of these three compounds.		
		Explain your answer.		
		strongest acid weakest acid		
		explanation		
		[3]		
		Palpa Califilo		

	(ii)	When concentrated $\mathrm{H_2SO_4}$ is added to water a series of acid-base reactions occurs.		
		There are three conjugate acid-base pairs that can be identified during this series of reactions.		
		Write the formulae of these three conjugate acid-base pairs.		
		conjugate acid 1 conjugate base 1		
		conjugate acid 2 conjugate base 2		
		conjugate acid 3 conjugate base 3		
(d)	The	partition coefficient, $K_{\rm pc}$, of a substance, Q , between hexane and water is 7.84 at 298 K.		
	Q is	more soluble in hexane than it is in water.		
	(i)	Define partition coefficient, $K_{\rm pc}$.		
		[1]		
	(ii)	5.00 g of Q is shaken with a mixture of 100.0 cm ³ of water and 100.0 cm ³ of hexane at 298 K and left until there is no further change in concentrations.		
		Calculate the mass of Q dissolved in the water.		
		6.0		
		mass of Q = g [1]		
	(iii)	A sample of ${\bf Q}$ is shaken with a different mixture of water and hexane and left until there is no further change in concentrations.		
		It is found that the mass of Q dissolved in each solvent is the same.		
		Use the $K_{\rm pc}$ value to suggest possible values for the volume of water used and the volume of hexane used.		
		volume of water = cm ³		
		volume of hexane =cm ³ [1]		
	(iv)	Q is more soluble in hexane than it is in water.		
		It is suggested that ${\bf Q}$ is one of KC1, CH ₃ (CH ₂) ₄ OH or HCOOH.		
		Identify Q . Explain your answer.		
		[1]		
		[Total: 14]		

2. Nov/2023/Paper_9701/42/No.2

Benzoic acid, C_6H_5COOH , is a weak acid. The K_a of benzoic acid is $6.31 \times 10^{-5} \, \mathrm{mol \, dm^{-3}}$ at $298 \, \mathrm{K}$.

A 1.00 dm 3 buffer solution is made at 298 K containing 1.00 g of C $_6$ H $_5$ COOH and a slightly greater mass of sodium benzoate, C $_6$ H $_5$ COO $^-$ Na $^+$.

This buffer solution has a pH of 4.15.

(a) Define buffer solution.

	[1

(b) Write equations to show how this solution acts as a buffer solution when the named substances are added to it:

(i) dilute aqueous s	sodium	hydroxide
----------------------	--------	-----------

 [1]

(ii) dilute aqueous nitric acid.

(c) Calculate the H $^+$ concentration and the C $_6$ H $_5$ COOH concentration in the buffer solution described. Use the expression for the K_a of C $_6$ H $_5$ COOH to calculate the concentration of C $_6$ H $_5$ COO $^-$ Na $^+$ in the buffer solution.

Show your working and give each answer to a minimum of three significant figures.

$$[H^{+}] = \mod mol \, dm^{-3}$$

$$[C_{6}H_{5}COO^{-}Na^{+}] = \mod dm^{-3}$$

$$[C_{6}H_{5}COO^{-}Na^{+}] = \mod dm^{-3}$$
 [3]

	Two	Two observations are recorded:		
	•	the temperature, after the reaction is complete, is fractionally above 298 K the pH, after the reaction, is greater than 13.		
	Exp	plain these two observations.		
		[2]		
(e)		gnesium benzoate, ${\rm Mg(C_6H_5COO)_2}$, has a solubility in water of less than $1.00{\rm gdm^{-3}}$ 298 K.		
		$K_{\rm sp} = [{\rm Mg^{2+}}][{\rm C_6H_5COO^-}]^2 = 1.76 \times 10^{-7} {\rm at} 298 {\rm K}$		
	(i)	Calculate the solubility of ${\rm Mg(C_6H_5COO)_2}$ in water at 298 K. Give your answer in g dm ⁻³ .		
		Show your working.		
		$[M_r: Mg(C_6H_5COO)_2, 266.3]$		
		solubility = g dm ⁻³ [2]		
	(ii)	An excess of $\mathrm{Mg(C_6H_5COO)_2}$ is added to a sample of 0.50 mol dm ⁻³ MgSO ₄ at 298 K.		
		State whether the equilibrium concentration of $Mg(C_6H_5COO)_2$ is higher than, the same as, or lower than your answer to (i). Explain your answer.		
		The concentration is the concentration in (i).		
		explanation		
		[1]		
		[Total: 11]		

(d) A $10.0\,\mathrm{cm^3}$ sample of the buffer solution is mixed with $10.0\,\mathrm{cm^3}$ of $1.00\,\mathrm{mol\,dm^{-3}}$ KOH. Both solutions are at 298 K. A reaction is allowed to occur without stirring.

3.	June/2023/Paper	_9701/41/No.5(d, e)	
J.	Julie/ 2023/ rapel	_3/01/41/NO.3(u, e)	

(d) Isocyanic acid, HNCO, can form cyanuric acid, $C_3H_3N_3O_3$, under certain conditions.

 ${\rm C_3H_3N_3O_3}$ has a cyclic structure containing alternating carbon and nitrogen atoms in the ring system.

Suggest a structure for cyanuric acid.

[1]

(e) Isocyanic acid, HNCO, is a weak acid.

$$HNCO + H_2O \rightleftharpoons H_3O^{\dagger} + NCO^{-}$$

pK_a = 3.70 at 25°C

(i) Write the mathematical expressions for pK_a and pH.

(ii) Calculate the pH of 0.120 mol dm⁻³ HNCO(aq). Give your answer to three significant figures.

(iii) Calculate the percentage of HNCO molecules that are ionised in 0.120 mol dm⁻³ HNCO.

percentage ionisation of HNCO =[1]

- June/2023/Paper_9701/42/No.3(e)
 - (e) Silver sulfite, Ag₂SO₃(s), is sparingly soluble in water.
 - (i) Give an expression for the solubility product, $K_{\rm sp}$, of ${\rm Ag_2SO_3}$.

$$K_{\rm sp} =$$

[1]

Calculate the equilibrium concentration of Ag⁺ in a saturated solution of Ag₂SO₃ at 298 K. $[K_{\rm sp}: {\rm Ag_2SO_3}, \, 1.50 \times 10^{-14} {\rm mol^3 \, dm^{-9}} {\rm \ at \ 298 \, K}]$

5. March/2023/Paper_9701/42/No.6(d)

A student uses thin-layer chromatography (TLC) to analyse a mixture containing different metal cations. The student repeats the experiment using different solvents.

Fig. 6.1 shows the chromatogram obtained by the student using water as a solvent.

(d) In a third experiment, the pH of the mixture of metal ions is kept constant using a buffer solution.

The student prepares the buffer solution by mixing 20.0 cm 3 of 0.150 mol dm $^{-3}$ KOH(aq) and 50.0 cm 3 of 0.100 mol dm $^{-3}$ C $_8$ H $_5$ O $_4$ K(aq).

 $C_8H_5O_4K$ is a weak carboxylic acid that has p $K_a = 5.40$.

Fig. 6.2

(i) Complete the equation for the reaction of $C_8H_5O_4K(aq)$ with KOH(aq).

$$C_8H_5O_4K + \dots$$
 [1]

(ii) Calculate the pH of the buffer solution. Show all your working.

