<u>Group 2 – 2023 A2 Chemistry 9701</u>

1.	Nov	/2023	/Paper	9701	/41	/No.40	h)
	1404	2023	, i apci	J / U ±	<i>,</i> – –	/ I NO. TI	~ 1

Cal	3/Paper_9701/41/No.4(b) cium nitrate, Ca(NO ₃) ₂ , is a white crystalline solid. When heated, it starts to decompos proximately 500°C.	e at
(i)	Write an equation for the decomposition of Ca(NO ₃) ₂ .	
		[1]
(ii)	Suggest temperatures at which ${\rm Mg(NO_3)_2}$ and ${\rm Ba(NO_3)_2}$ start to decompose.	
	Explain your answer.	
	temperature at which Mg(NO ₃) ₂ starts to decompose	. °C
	temperature at which Ba(NO ₃) ₂ starts to decompose	°C
	explanation	
	Pale	[3]

2. Nov/2023/Paper_9701/42/No.5

Some of the ionic compounds of Group 2 elements undergo thermal decomposition.

Thermal decomposition of solid anhydrous magnesium ethanedioate, MgC_2O_4 , occurs above 650 °C. The products are magnesium oxide and a mixture of two different gases, one of which gives a white precipitate with saturated calcium hydroxide solution.

(a) Complete the equation for the thermal decomposition of MgC₂O₄.

$$MgC_2O_4 \rightarrow$$
 [1]

(b) Suggest which of ${\rm MgC_2O_4}$ or ${\rm CaC_2O_4}$ undergoes thermal decomposition at a lower temperature. Explain your answer.

10

(c) The ethanedioate ion is oxidised by acidified KMnO₄.

$$5C_2O_4^{2-} + 2MnO_4^{-} + 16H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O_4^{-}$$

An experiment is performed to find the solubility of MgC₂O₄ in water.

A 40.0 cm³ sample of saturated aqueous ${\rm MgC_2O_4}$ requires 27.05 cm³ of 0.00200 mol dm⁻³ acidified KMnO₄ to oxidise all the ${\rm C_2O_4}^{2-}$ ions.

Calculate the solubility, in moldm⁻³, of MgC₂O₄ in water. Show your working.

solubility = mol dm⁻³ [3]

[Total: 6]

(a)	Group 2 nitrates decompose when heated.
	Describe how the thermal stability of Group 2 nitrates changes with increasing proton number.
	Explain your answer.
	[3]
(b)	Copper(II) nitrate decomposes in a similar manner to Group 2 nitrates.
	Write an equation for the decomposition of Cu(NO ₃) ₂ .
	Palpacainin[1]

3. June/2023/Paper_9701/41/No.1(a, b)

