Hydrocarbons – 2023 A2 Chemistry 9701

1. Nov/2023/Paper_9701/41/No.8(c)

HO

Capsaicin is found in chilli peppers.

You should assume the CH₃O group is unreactive in the reactions involved in this question.

(c) Capsaicin is heated with an excess of hydrogen gas in the presence of platinum metal.

The six-membered ring reacts in the same way as benzene under these conditions.

Palpa Calillo Draw the structure of the organic product formed.

[2]

2. June/2023/Paper_9701/41/No.4(a

(a)

State the hybridisation of the carbon atoms and the C–C–H bond angle in benzene, C_6 Explain how orbital overlap leads to the formation of σ and π bonds in benzene.	H ₆ .
	ုၖ]

3. June/2023/Paper_9701/42/No.5(a _ c)

(a) Methylbenzene can undergo different reactions, as shown in Fig. 5.1.

Fig. 5.1

- (i) Draw structures in Fig. 5.1 for the possible organic products of the three reactions shown.
- (ii) Complete Table 5.1.

Table 5.1

	type of reaction	mechanism
reaction 1		
reaction 2		
27.5		

(b) When methylbenzene reacts with an electrophile, a substitution reaction occurs. No addition reaction takes place under these conditions.

Explain why no addition reaction takes place.

[3]

[2]

(c) The reaction of methylbenzene with thionyl bromide, SOBr₂, in the presence of an iron(III) bromide catalyst, FeBr₃, is shown in Fig. 5.2.

Fig. 5.2

The mechanism of this reaction is similar to that of the bromination of benzene.

The first step of the mechanism generates the SOBr⁺ electrophile, as shown.

$$SOBr_2 + FeBr_3 \rightarrow SOBr^+ + FeBr_4^-$$

(i) The reaction of methylbenzene with SOBr⁺ ions is shown in Fig. 5.3. Complete the mechanism in Fig. 5.3.

Include all relevant curly arrows and charges.

Draw the structure of the organic intermediate.

Fig. 5.3

[3]

(ii) The reaction shown in Fig. 5.2 produces a small amount of a by-product, $\bf P$, with the molecular formula $C_{14}H_{14}OS$.

Suggest a structure for by-product P.

4.		/2023/Paper_9701/42/No.7(a _ c) Explain why phenol is brominated much more easily than benzene is brominated.	
	(a)	Explain why phenor is brominated much more easily than benzene is brominated.	
			•••••
			•••••
			[3]
	(b)	lodine monobromide, I–Br, reacts with benzene in the presence of an AlBr ₃ catalyst.	
		Predict whether the organic product will be bromobenzene or iodobenzene. Explain your answer.	
			[1]
	(c)	Fig. 7.1 shows some reactions of phenol.	
		Na(s) excess Br ₂ (aq)	
		Q R	
		reaction 1 reaction 2	
		O_2N OH O N=N OH	
		Fig. 7.1	
		(i) Give an equation for the reaction of phenol with Na(s).	
			[1]

		[1]
(iii)	State the reagents and conditions for reaction 1 and reaction 2 in Fig. 7.1.	
	reaction 1reaction 2	
	Palpa	[2] [Total: 8]

(ii) Draw the structure of the organic product, ${\bf R}$, formed when phenol reacts with an excess of ${\rm Br_2}({\rm aq})$.

5. March/2023/Paper_9701/42/No.5(a_e)

Tulobuterol is used in some medicines.

tulobuterol

Fig. 5.1

(a) Tulobuterol contains a benzene ring in its structure.

Describe and explain the shape of benzene.

In your answer, include:

- · the bond angle between carbon atoms
- · the hybridisation of the carbon atoms
- how orbital overlap forms σ and π bonds between the carbon atoms.

(b) In a synthesis of tulobuterol, the first step involves the formation of chlorobenzene. Benzene reacts with Cl₂ in the presence of an AlCl₃ catalyst.

Fig. 5.2

(i) Write an equation to show how Cl_2 reacts with $AlCl_3$ to generate an electrophile.

.....[1]

(ii) Complete the mechanism in Fig. 5.3 for the reaction of benzene with the electrophile generated in (b)(i).

Include all relevant curly arrows and charges.

Draw the structure of the intermediate.

[3]

(c) The second step of the synthesis involves the reaction of chlorobenzene with C1COCH2C1, also in the presence of an $AlCl_3$ catalyst, forming compound \mathbf{Q} .

Fig. 5.4

(i)	Name the mechanism of the reaction in step 2.	
		[1]

Draw the structure of an isomer of Q that forms as an organic by-product of the reaction in step 2.

[1]

Palpacalitik The reactants used in step 2 contain acyl chloride, alkyl chloride and aryl chloride (iii) functional groups.

State and explain the relative ease of hydrolysis of acyl chlorides, alkyl chlorides and aryl chlorides.

easiest to hydrolyse	hardest to hydrolyse
	[0]

(d) Tulobuterol is produced from Q as shown in Fig. 5.5.

Fig. 5.5

Suggest reagents and conditions for steps 3 and 4.

Draw the structure of **Z** in the box.

step 3 step 4 step 4

(e) The synthesis produces two enantiomers of tulobuterol.

(i)	Define enantiomers.			

.....[1]

Suggest **one** disadvantage of producing two enantiomers in this synthesis.

(iii) Suggest a method of adapting the synthesis to produce a single enantiomer.

[1

[3]

tulobuterol

(f)	(i)	Predict the number of peaks that would be seen in the carbon-13 NMR spectrum of tulobuterol.
		[1]
	(ii)	The proton ($^1\mathrm{H}$) NMR spectrum of tulobuterol dissolved in $\mathrm{D}_2\mathrm{O}$ shows peaks in four different types of proton environment.
		The peak for the —CH $_2$ N— environment is a doublet in the chemical shift range δ = 2.0–3.0 ppm.
		Give details for each of the other three peaks in the proton NMR spectrum of tulobuterol, to include:
		 chemical shift environment of the proton splitting pattern number of ¹H atoms responsible.
		Table 5.1 gives information about typical chemical shift values.

Table 5.1

environment of proton	example	chemical shift range δ/ppm
alkane	-CH ₃ , -CH ₂ -, >CH-	0.9–1.7
alkyl next to C=O	CH ₃ -C=O, -CH ₂ -C=O, >CH-C=O	2.2–3.0
alkyl next to aromatic ring	CH ₃ -Ar, -CH ₂ -Ar, >CH-Ar	2.3–3.0
alkyl next to electronegative atom	$\begin{array}{c} \operatorname{CH_3-O, -CH_2-O,} \\ -\operatorname{CH_2-C} l \end{array}$	3.2–4.0
attached to alkene	=CHR	4.5–6.0
attached to aromatic ring	H–Ar	6.0-9.0
aldehyde	HCOR	9.3–10.5
alcohol	ROH	0.5-6.0
phenol	Ar-OH	4.5–7.0
carboxylic acid	RCOOH	9.0–13.0
alkyl amine	R-NH-	1.0-5.0
aryl amine	Ar-NH ₂	3.0-6.0
amide	RCONHR	5.0-12.0

[Total: 22]