Nitrogen compounds - 2023 A2 Chemistry 9701 Nov/2023/Paper_9701/42/No.9

(a)	State the reactants and conditions for two different types of reactions that both produce diethylamine, $\mathrm{CH_3CH_2NHCH_2CH_3}$.
	reaction one
	reaction two
	[4]
(b)	Describe the relative basicities of diethylamine, phenylamine and ammonia in aqueous solution.
	Explain your answer in terms of structure.
	least basic most basic
	explanation
	69
	[3]
(c)	Phenylamine reacts with HNO ₂ (aq) at 4°C to form compound P . Compound P reacts with phenol under alkaline conditions at 4°C. The product of this reaction is acidified, forming azo compound Q .
	Draw the structure of compound Q.
	Circle the azo group on your structure.
	State one use of an azo compound such as Q.
	compound Q :
	An azo compound can be used
	[2]

(d) $\text{CH}_3\text{CH}_2\text{NHCH}_2\text{CH}_3$ reacts with ethanoyl chloride, $\text{CH}_3\text{COC}\mathit{l}$, to give the amide N,N-diethylethanamide, $\text{CH}_3\text{CON}(\text{C}_2\text{H}_5)_2$.

An incomplete description of the mechanism of this reaction is shown in Fig. 9.1.

Fig. 9.1

- (i) Complete the mechanism in Fig. 9.1. You should include:
 - all relevant dipoles (δ+ and δ-) and full electric charges (+ and -) on the species in box one and in box two
 - all relevant lone pairs on the species in box one and in box two
 - all relevant curly arrows to show the movement of electron pairs in box one and in box two
 - the formula of the second product in box three.

(ii) Name this mechanism. [1]

[4]

2. June/2023/Paper_9701/42/No.6

(a) Perindopril is a drug used to treat heart disease.

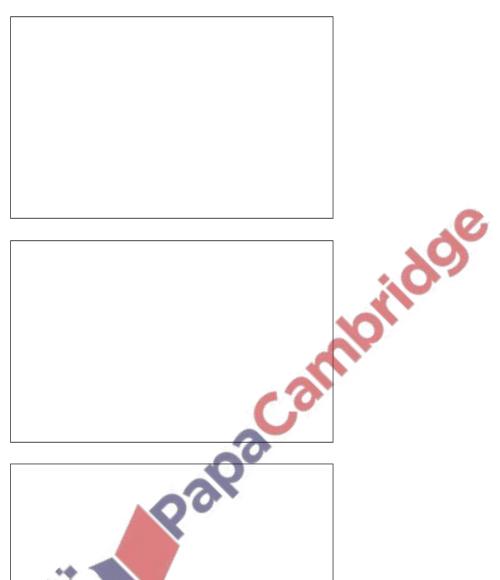

perindopril

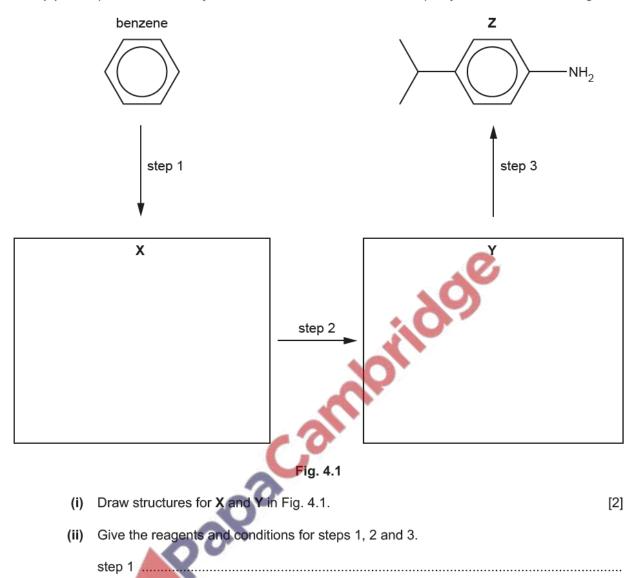
Fig. 6.1

	(i)	State the number of chiral carbon atoms present in one molecule of perindopril.	
			1
			•
	(ii)	Suggest one benefit and one disadvantage of producing a drug such as perindopril as single pure optical isomer.	а
		benefit	
		disadvantage	
		disadvaritage	••
			2
(b)	(i)	Name all the functional groups in perindopril.	
			2
			_

(ii) A sample of perindopril is hydrolysed with hot aqueous acid.

Draw the structures of the **three** organic products of the **complete** acid hydrolysis of perindopril.

[3]


[Total: 8]

3. June/2023/Paper_9701/41/No.4(b,c)

step 2

step 3

(b) Compound Z can be synthesised from benzene in three steps by the route shown in Fig. 4.1.

[3]

(c) Compound W is an isomer of Z.

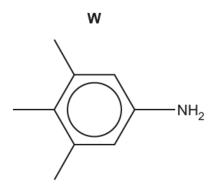
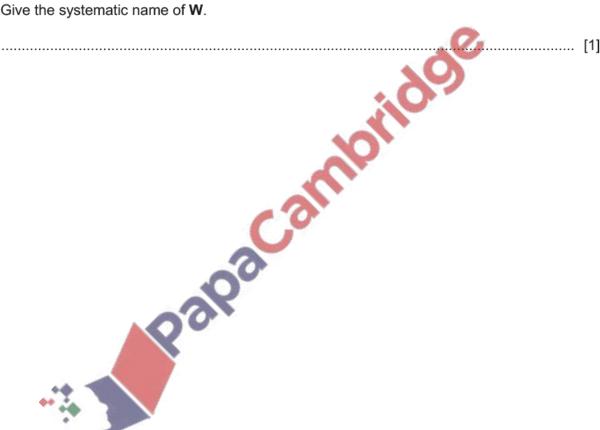



Fig. 4.2

Give the systematic name of ${\bf W}$.

4. June/2023/Paper_9701/41/No.7(a _ d)

- (a) State the relative basicities of ethanamide, diethylamine and ethylamine in aqueous solution. Explain your answer. most basic least basic [4] (b) The amino acid alanine, H₂NCH(CH₂)COOH, can act as a buffer Define a buffer solution. Write two equations to show how an aqueous solution of alanine can act as a buffer solution. (c) Glutamic acid is another amino acid that acts as a buffer.

glutamic acid

Fig. 7.1

(i) Draw the skeletal formula for glutamic acid.

	(ii)	Draw the structure for the dipeptide, ala-glu, formed from one molecule of alanine and one molecule of glutamic acid.
		The peptide bond formed should be displayed.
		[2]
(d)		e isoelectric point of alanine is 6.0 and of glutamic acid is 3.2.
		nixture of the dipeptide, ala-glu, and its two constituent amino acids, alanine and glutamic d, is analysed by electrophoresis using a buffer at pH 6.0.
+)		× 10
		mixture applied here
		Fig. 7.2
		w and label three spots on Fig. 7.2 to indicate the predicted position of each of these se species after electrophoresis.
	Exp	olain your answer.
	•	

.....[3]

5. March/2023/Paper_9701/42/No.4(a_ d)

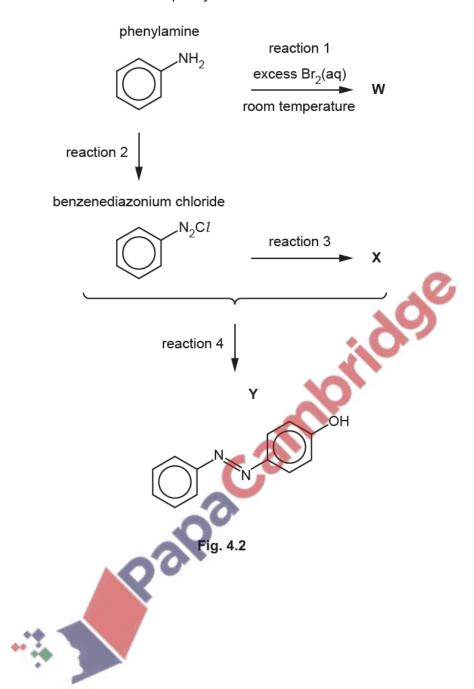
(iii)

Ethylamine and phenylamine are primary amines.

Fig. 4.1

These two compounds are synthesised by different methods.

(a) Several methods can be used to form ethylamine.


- (i) Ethylamine forms when ethanamide, CH₃CONH₂, is reduced by LiA*l*H₄.
 Write an equation for this reaction. Use [H] to represent one atom of hydrogen from the reducing agent.
 [1]
 (ii) Ethylamine is a product of the reaction of bromoethane with ammonia.
 Name the mechanism of this reaction and state the conditions used.
 mechanism
 - Suggest the identity of a secondary or tertiary amine formed by the reaction in (a)(ii).

The reaction in (a)(ii) also forms secondary and tertiary amines.

[2]

(b)	Ethylamine is a weak base.
	State the relative basicities of ammonia, ethylamine and phenylamine.
	Explain your answer.
	least basic constraint control
	.0,
	[4]
(c)	Pure phenylamine, C ₆ H ₅ NH ₂ , can be prepared from benzene in two steps.
	Draw the structure of the intermediate compound.
	Suggest reagents and conditions for each step.
	[3]

(d) Fig. 4.2 shows some reactions of phenylamine.

		[1]
(ii)	State the reagents used in reaction 2.	
		[1]
	zenediazonium chloride, $C_6H_5N_2Cl$, and X react together in reaction 4 to form Y , an apound.	azo
iii)	Name X, the organic product of reaction 3.	
iv)	State the necessary conditions for reaction 4 to occur.	[1]
(v)	Suggest a use for Y.	
		[1]

(i) Draw the structure of ${\bf W}$, the organic product of reaction 1.