Reaction Kinetics - 2023 A2 Chemistry 9701

1. Nov/2023/Paper 9701/41/No.1

Fluorine reacts with chlorine dioxide, ClO2, as shown.

$$F_2(g) + 2ClO_2(g) \rightarrow 2FClO_2(g)$$

The rate of the reaction is first order with respect to the concentration of F_2 and first order with respect to the concentration of ClO_2 . No catalyst is involved.

(a) (i) Suggest a two-step mechanism for this reaction.

step 1
$$\rightarrow$$
 step 2 \rightarrow

[2]

(ii) Identify the rate-determining step in this mechanism. Explain your answer.

70)	70		
	0	•	

- (b) When the rate of the reaction is measured in moldm $^{-3}$ s $^{-1}$ the numerical value of the rate constant, k, is 1.22 under certain conditions.
 - (i) Complete the rate equation for this reaction, stating the overall order of the reaction.

[1]

(ii) Use your rate equation in (i) to calculate the rate of the reaction when the concentrations of F_2 and C_1O_2 are both $2.00 \times 10^{-3} \, \text{mol dm}^{-3}$.

rate =
$$moldm^{-3}s^{-1}$$
 [1]

(c) Under different conditions, and in the presence of a large excess of C1O2, the rate equation is as shown.

rate =
$$k_1[F_2]$$

The half-life, t_{1} , of the concentration of F_{2} is 4.00 s under these conditions.

(i) Calculate the numerical value of k_1 , giving its units.

Give your answer to three significant figures.

$$k_1 = \dots$$
 units \dots [2]

(ii) An experiment is performed under these conditions in which the starting concentration of F_2 is 0.00200 mol dm⁻³.

Draw a graph on the grid in Fig. 1.1 to show how the concentration of F₂ changes over the first 12s of the reaction.

Fig. 1.1

[1]

(iii) Use your graph in Fig. 1.1 to find the rate of the reaction when the concentration of F₂ is 0.00100 mol dm⁻³. Show your working on the graph.

rate =
$$moldm^{-3}s^{-1}$$
 [1]

[Total: 9]

Nov	//2023/Paper_9701/41/No.3(d)
(d)	The decomposition of H ₂ O ₂ (aq) is catalysed by aqueous iron(III) chloride and by silver metal.
	Identify which of these two catalysts is acting as a homogeneous catalyst.
	Explain your answer.

2.

homogeneous catalystexplanation

3. Nov/2023/Paper 9701/42/No.1

Propanone, CH₃COCH₃, reacts with iodine, I₂, in the presence of an acid catalyst.

$$\mathsf{CH_3COCH_3} + \mathsf{I_2} \! \to \! \mathsf{CH_3COCH_2I} + \mathsf{H}^+ + \mathsf{I}^-$$

The rate equation for this reaction is shown.

rate =
$$k[CH_3COCH_3][H^+]$$

(a) Complete Table 1.1 to describe the order of the reaction.

Table 1.1

order of the reaction with respect to [CH ₃ COCH ₃]	
order of the reaction with respect to $[{\rm I_2}]$	
order of the reaction with respect to [H ⁺]	
overall order of the reaction	

[2]

- (b) An experiment is performed using a large excess of CH_3COCH_3 and a large excess of $H^+(aq)$. The initial concentration of I_2 is $1.00\times 10^{-5}\,\mathrm{mol\,dm^{-3}}$. The initial rate of decrease in the I_2 concentration is $2.27\times 10^{-7}\,\mathrm{mol\,dm^{-3}\,s^{-1}}$.
 - (i) Use the axes to draw a graph of [I₂] against time for the first 10 seconds of the reaction.

(ii)	State whether it is possible to calculate the numerical value of the rate constant, k , for
	this reaction from your graph. Explain your answer.

••••	 	•••••	 	 	 	 	
							[4]

(c) The experiment is repeated at a different temperature. The initial concentrations of H^+ ions, I_2 and CH_3COCH_3 are all $0.200\,\mathrm{mol\,dm^{-3}}$.

The value of k at this temperature is $2.31 \times 10^{-5} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$.

Calculate the initial rate of this reaction.

rate =
$$moldm^{-3}s^{-1}$$
 [1]

(d) The experiment is repeated using an excess of H⁺(aq). The new rate equation is shown.

rate =
$$k_1$$
[CH₃COCH₃]

(i) The value of k_1 is 1.1×10^{-3} s⁻¹. Calculate the value of the half-life, $t_{\frac{1}{2}}$.

$$t_{\frac{1}{2}} = \dots$$
 s [1]

(ii) Use your answer to (i) to draw a graph of [CH₃COCH₃] against time for this reaction. The initial value of [CH₃COCH₃] on your graph should be 0.200 mol dm⁻³. The final value of [CH₃COCH₃] on your graph should be 0.0250 mol dm⁻³.

5

(e) A four-step mechanism is suggested for the overall reaction.

$$CH_3COCH_3 + I_2 \rightarrow CH_3COCH_2I + H^+ + I^-$$
 rate = $k[CH_3COCH_3][H^+]$

Part of this mechanism is shown.

step 2:
$$CH_3C^+(OH)CH_3 \rightarrow CH_3C(OH)=CH_2 + H^+$$

step 4:
$$CH_3C^+(OH)CH_2I \rightarrow CH_3COCH_2I + H^+$$

(i) Write an equation for step 3.

[43
[1]

(ii) Suggest the slowest step of the mechanism. Explain your answer

 [1]	

(iii) Identify one conjugate acid-conjugate base pair in the mechanism.

			_
conjugate acid	conjugate base	[1	1
conjugate acid		11	

[Total: 10]

4.	June/2023/	/Paper_	9701/	⁴¹ /No.5(a)	
----	------------	---------	-------	------------------------	--

(a) The exhaust systems of most modern gasoline-fuelled cars contain a catalytic converter with three metal catalysts.

These metals act as heterogeneous catalysts.

(i)	Name three	metal	catalysts u	ısed in	catalytic	converters.
-----	------------	-------	-------------	---------	-----------	-------------

	•	•	
1	2	3	[1]
ı	 ∠	0	[1]

(ii) Explain what is meant by a heterogeneous catalyst.

F41

5. June/2023/Paper_9701/41/No.3

(a) Aqueous acidified iodate(V) ions, ${\rm IO_3}^-$, react with iodide ions, as shown.

$$\mathrm{IO_3^-} + \mathrm{6H^+} + \mathrm{5I^-} \longrightarrow \mathrm{3I_2} + \mathrm{3H_2O}$$

The initial rate of this reaction is investigated. Table 3.1 shows the results obtained.

Table 3.1

experiment	[IO ₃ ⁻]/moldm ⁻³	[H ⁺]/moldm ⁻³	[I ⁻]/moldm ⁻³	initial rate/moldm ⁻³ min ⁻¹
1	0.0400	0.0150	0.0250	4.20×10^{-2}
2	0.120	to be calculated	0.0125	7.09 × 10 ⁻²

The rate equation for this reaction is rate = $k[IO_3^-][H^+]^2[I^-]^2$.

(i)	Explain	what is	meant by	order o	f reaction
-----	---------	---------	----------	---------	------------

NO.
101
 [1]

(ii) Complete Table 3.2.

Table 3.2

the order of reaction with respect to [IO ₃ ⁻]	
the order of reaction with respect to [H ⁺]	
the order of reaction with respect to [I ⁻]	
the overall order of reaction	

[1]

(iii) *Use your answer to (a)(ii) to sketch lines in Fig. 3.1 to show the relationship between the initial rates and the concentrations of [IO₃⁻] and [I⁻].

Fig. 3.1

		Include the units of <i>k</i> .
	(v)	k = units
	<i>(</i>)	[H ⁺] = mol dm ⁻³ [1]
	(vi)	This reaction is repeated in two separate experiments. The experiments are carried out at the same temperature and with the same concentrations of I^- and IO_3^- .
		One experiment takes place at pH 1.0 and the other experiment takes place at pH 2.0.
		Calculate the value of $\frac{\text{rate at pH 1.0}}{\text{rate at pH 2.0}}$.
		value of rate at pH 1.0 rate at pH 2.0 =[1]
(b)	In a	queous solution, iron(III) ions react with iodide ions, as shown. ${\rm 2Fe^{3^+}+2I^-} \longrightarrow {\rm 2Fe^{2^+}+I_2}$
		initial rate of reaction is first order with respect to Fe ³⁺ and second order with respect
	The	mechanism for this reaction has three steps.
	Eac	h step involves only two ions reacting together.
	Sug	gest equations for the three steps of this mechanism. Identify the rate-determining step.
	step	1
	step	2
	step	3
	rate	-determining step =[3]

(iv) Use data from Table 3.1 to calculate the rate constant, k, for this reaction.

6. June/2023/Paper_9701/42/No.4

(a) In aqueous solution, iron(III) ions react with iodide ions, as shown.

$$2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$$

A series of experiments is carried out using different concentrations of ${\rm Fe^{3^+}}$ and ${\rm I^-}$, as shown in Table 4.1.

Table 4.1

experiment	[Fe ³⁺]/moldm ⁻³	[I ⁻]/moldm ⁻³	initial rate/moldm ⁻³ s ⁻¹
1	0.0400	0.0200	2.64 × 10 ⁻⁴
2	0.1200	0.0200	7.92 × 10 ⁻⁴
3	0.0800	0.0400	2.11 × 10 ⁻³

		0.000	0.0.00		
(i)		t is meant by overall		100	
				•	[1]
(ii)	Use the data respect to I ⁻		duce the order of	reaction with respect to	Fe ³⁺ and with
	Explain your		3		
		A,			
(iii)		swer to (a)(ii) to con		uation for this reaction.	[2]
,	rate		struct the rate equ	dation for this reaction.	[1]
(iv)	•	swer to (a)(iii) and thaction. Include the u		riment 1 to calculate the	rate constant,
			k =	units	[2]

v)	Describe qualitatively the effect of an increase in temperature on the rate constant a on the rate of this reaction.	

(b) In aqueous solution, iodide ions react with acidified hydrogen peroxide, as shown.

$$2\mathrm{I}^- + \mathrm{H_2O_2} + 2\mathrm{H}^+ \rightarrow \mathrm{I_2} + 2\mathrm{H_2O}$$

The initial rate of reaction is found to be first order with respect to I^- , first order with respect to H_2O_2 and zero order with respect to H^+ .

Fig. 4.1 shows a possible four-step mechanism for this reaction.

$$\begin{array}{lll} \text{step 1} & \text{H}_2\text{O}_2 + \text{I}^- \rightarrow \text{IO}^- + \text{H}_2\text{O} \\ \\ \text{step 2} & \text{H}^+ + \text{IO}^- \rightarrow \text{HIO} \\ \\ \text{step 3} & \text{HIO} + \text{I}^- \rightarrow \text{I}_2 + \text{OH}^- \\ \\ \text{step 4} & \text{OH}^- + \text{H}^+ \rightarrow \text{H}_2\text{O} \\ \end{array}$$

Fig. 4.1

(i)	Suggest which of the steps, 1, 2, 3 or 4, in this mechanism is the rate-determining step.
	Explain your answer.
	[1]
(ii)	Identify a step in Fig. 4.1 that involves a redox reaction.
	Explain your answer in terms of oxidation numbers.
	10.0
	[1]
(iii)	Suggest the role of HIO in this mechanism.
	Explain your reasoning.
	[1]
	[Total: 10]

7. March/2023/Paper_9701/42/No.2(c, d)

(c) $H_2PO_2^-(aq)$ reacts with $OH^-(aq)$.

$$H_2PO_2^-(aq) + OH^-(aq) \rightarrow HPO_3^{2-}(g) + H_2(g)$$

Table 2.1 shows the results of a series of experiments used to investigate the rate of this reaction.

Table 2.1

experiment	[H ₂ PO ₂ ⁻ (aq)] /moldm ⁻³	[OH ⁻ (aq)] /moldm ⁻³	volume of H ₂ produced in 60 s /cm ³
1	0.40	2.00	6.4
2	0.80	2.00	12.8
3	1.20	1.00	4.8

(i) The volume of H₂ was measured under room conditions.

Use the molar volume of gas, $V_{\rm m}$, and the data from experiment 1 to calculate the rate of reaction in mol dm⁻³ s⁻¹.

am		
200		
rate of reaction =	mol dm ⁻³ s ⁻¹	[1]

(ii) The rate equation was found to be:

Show that the data in Table 2.1 is consistent with the rate equation.

......[2]

(iii) State the units of the rate constant, k, for the reaction.

.....[1]

	$t_{\frac{1}{2}} = \dots $ s [1]
	(v) Describe how an increase in temperature affects the value of the rate constant, k_1 .
	[1]
(d)	A student suggests that the reaction between $H_2PO_2^-(aq)$ and $OH^-(aq)$ might happen more quickly in the presence of a heterogeneous catalyst.
	Describe the mode of action of a heterogeneous catalyst.
	~?
	[2]

(iv) The experiment is repeated using a large excess of OH⁻(aq).

Calculate the value of the half-life, $t_{\underline{i}}$, of the reaction.

rate = $k_1 [H_2PO_2^{-}(aq)]$

Under these conditions, the rate equation is:

 $k_1 = 8.25 \times 10^{-5} \,\mathrm{s}^{-1}$