Electrochemistry – 2021 AS

1. Nov/2021/Paper 12/No.32

Four solutions, each of concentration $0.1\,\mathrm{mol\,dm^{-3}}$, were tested with a pH meter. The results are shown.

solution	formula of acid or base	рН
acid 1	CH₃CO₂H	4
acid 2	HNO ₃	1
base 1	CH₃NH₂	11
base 2	NaOH	14

Which statements explain these results?

- 1 Acid 2 has a lower pH than acid 1 because it is more soluble.
- 2 Base 2 has a higher concentration of hydroxide ions in solution than base 1
- 3 Acid 1 dissociates less than acid 2.

2. Nov/2021/Paper_13/No.9

Zinc atoms can be oxidised to Zn^{2+} ions by dichromate(VI) ions in acid solution. Chromium is reduced to Cr^{3+} in this reaction.

Which equation is correct?

A
$$Cr_2O_7^{2-} + Zn + 14H^+ \rightarrow 2Cr^{3+} + Zn^{2+} + 7H_2O_7^{2-}$$

B
$$Cr_2O_7^{2-} + Zn + 14H^+ \rightarrow 2Cr^{3+} + 3Zn^{2+} + 7H_2O$$

C
$$Cr_2O_7^{2-} + 3Zn + 14H^+ \rightarrow 2Cr^{3+} + 3Zn^{2+} + 7H_2O_7^{2-}$$

D
$$2Cr_2O_7^{2-} + 3Zn + 14H^+ \rightarrow 2Cr^{3+} + 3Zn^{2+} + 7H_2O$$

3. Nov/2021/Paper_13/No.17

Z is a compound of sodium, chlorine and oxygen.

It contains 45.1% by mass of oxygen.

Z is prepared by reacting sodium hydroxide with chlorine.

Which row shows the conditions used for the reaction and the oxidation state of chlorine in Z?

1

	reaction conditions	oxidation state of Cl in Z
Α	cold dilute NaOH	+1
В	cold dilute NaOH	+5
С	hot concentrated NaOH	+1
D	hot concentrated NaOH	+5

	37 (0004/5 04)		200	
4.	Nov/2021/Paper_21/	No 10	(C)	1
	110 1/2021/1 aper 21/	110.11	\sim ,	,

- (c) Hydrogen sulfide gas, H₂S(g), is slightly soluble in water. It acts as a weak acid in aqueous solution.
 - (i) State the meaning of weak acid.

		[1]
(ii)	Give the formula of the conjugate base of H ₂ S.	

.....[1]

(iii) H₂S(aq) reacts slowly with oxygen dissolved in water. The reaction is represented by the following equation.

$$H_2S(aq) + \frac{1}{2}O_2(aq) \rightarrow H_2O(l) + S(s)$$
 Explain, with reference to oxidation numbers, why this reaction is a redox reaction.

5. Nov/2021/Paper_21/No.3

Phosphorus is a reactive Period 3 element.

(a) Phosphorus has several allotropes. Details of two allotropes are given.

allotrope of phosphorus	formula	melting point/°C
white	P ₄	44
red	Р	590

(i) White phosphorus and red phosphorus both have covalent bonding.

Suggest the types of structure shown by white phosphorus (P₄) and red phosphorus (P).

Explain why red phosphorus (P) has a higher melting point than white phosphorus (P₄).

structure of P₄

explanation

[3]

(ii) Red phosphorus (P) forms when white phosphorus (P₄) is exposed to sunlight.

$$\frac{1}{4}P_4(s) \rightarrow P(s) \qquad \Delta H = -17.6 \text{ kJ mol}^{-1}$$
white red

Use this information to draw a reaction pathway diagram to show the formation of red phosphorus (P) from white phosphorus (P_4).

[1]

(b) Some reactions of P₄(s) are shown in the reaction scheme.

(i) State the oxidation number of phosphorus in P₄O₁₀.

......[1]

(ii) Deduce the identity of Q and hence construct chemical equations for reactions 1 and 2.

(c) Triphenylphosphine is used in a type of reaction known as a Wittig reaction.

triphenylphosphine

(i) Give the empirical formula of triphenylphosphine.

[1]

In a Wittig reaction, an aldehyde reacts with a halogenoalkane to form an alkene. The conversion is shown in the following unbalanced equation.

$$R^1$$
 + R^2 I triphenylphosphine strong base

Compound ${\bf H}$ can be made from propanal, C_2H_sCHO . Stage 3 in the reaction scheme is a Wittig reaction.

(ii) State the types of reaction that occur in stages 1 and 2.

(iii) Draw the structures of G and H in the boxes provided.

(d) Identify the organic products formed when compound J, shown below, is heated with hot concentrated acidified manganate(VII) ions.

[Total: 14]

6. March/2021/Paper_12/No.8

VO₂C1 reacts with NaI under acidic conditions.

$$2 \text{VO}_2 \text{C} \textit{l} + 2 \text{H}_2 \text{SO}_4 + 2 \text{NaI} \rightarrow \text{VOC} \textit{l}_2 + \text{VOSO}_4 + \text{I}_2 + \text{Na}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$$

The oxidation state of Cl is -1 in VO_2Cl and in $VOCl_2$.

Which row about this reaction is correct?

	vanadium	iodine
Α	is oxidised	is oxidised
В	is oxidised	is reduced
С	is reduced	is oxidised
D	is reduced	is reduced

7. June/2021/Paper_11/No.9

When hydrogen iodide is reacted with concentrated sulfuric acid, several reactions occur, including:

$$8 \text{HI + H}_2 \text{SO}_4 \, \rightarrow \, \text{H}_2 \text{S + 4H}_2 \text{O + 4I}_2$$

Which row gives the change in oxidation number of iodine and of sulfur in this reaction?

	change in oxidation number of iodine	change in oxidation number of sulfur	
Α	– 1	+6	
В	-1	+8	
С	+1	-6	
D	+1	– 8	

June/2021/Paper_11/No.25

When an organic compound is oxidised, any oxygen atom gained by the organic molecule is considered to be from a water molecule also producing $2H^+ + 2e^-$. Any hydrogen atom lost may be considered to be lost as H⁺ + e⁻.

These changes can be represented by the following two equations.

$$H_2O \rightarrow [O] + 2H^+ + 2e^-$$

 $[H] \rightarrow H^+ + e^-$

Compound X is oxidised by heating under reflux with hot, acidified potassium dichromate(VI) for one hour. The half-equation for the reduction reaction is shown.

$$\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$

Under these conditions, one mole of potassium dichromate(VI) oxidises three moles of X. Abridos

What could X be?

- A propanal
- B propan-1-ol
- C propan-1,2-diol
- **D** propan-1,3-diol

9. June/2021/Paper 12/No.9

The equation for a redox reaction is shown.

$$SnCl_2(aq) + 2HgCl_2(aq) \rightarrow SnCl_4(aq) + Hg_2Cl_2(s)$$

Which species is being oxidised in this reaction

- A Sn²⁺
- B C1-

10. June/2021/Paper 13/No.32

The equation shows the decomposition of three moles of an ion containing chromium in an acid solution.

7

$$3CrO_4^{3-}(aq) + 8H^+(aq) \rightarrow 2CrO_4^{2-}(aq) + Cr^{3+}(aq) + 4H_2O(I)$$

Which statements are correct?

- One mole of CrO_4^{3-} is reduced.
- Two moles of CrO_4^{3-} are oxidised. 2
- Three moles of electrons are transferred.

11. June/2021/Paper_13/No.35

Which reagents produce a solution of sodium chlorate (V)?

- 1 chlorine and hot concentrated sodium hydroxide solution
- 2 chlorine and cold dilute sodium hydroxide solution
- 3 chlorine dissolved in water at room temperature

12. June/2021/Paper_23/No.1(f)

(f) Sodium chlorate(I), NaClO, oxidises dilute hydrochloric acid to form three products. The products which contain chlorine have chlorine species with oxidation number -1 or 0.

No other species changes its oxidation number during the reaction.

Use this information to complete the ionic equation.