Equilibria - 2021 AS

1. Nov/2021/Paper_11/No.10

The equation shows that $H_2(g)$ and $I_2(g)$ react to form an equilibrium mixture.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 $\Delta H^{\circ} = -9.6 \text{ kJ mol}^{-1}$

A mixture containing equal amounts of $H_2(g)$ and $I_2(g)$ is made at temperature \mathcal{T}_1 and the composition of the mixture is monitored. A graph of the results is shown.

2. Nov/2021/Paper_11/No.11

The diagram shows the Boltzmann distribution of energies for a reactant gas. For a particular reaction, the activation energy is X.

Which change to the diagram occurs if an effective catalyst is added at the same temperature?

- A More particles will possess higher values of E.
- B The peak will move to the left.
- C The peak will move to the right.
- **D** The value of the activation energy decreases.

3. Nov/2021/Paper_11/No.32

Iron reacts with steam to produce hydrogen and an oxide of iron.

$$3Fe(s) + 4H_2O(g) \rightleftharpoons Fe_3O_4(s) + 4H_2(g)$$

A system containing all four substances is at equilibrium.

Which changes will decrease the mass of Fe present at equilibrium?

- 1 addition of steam at constant pressure
- 2 increase in overall pressure
- 3 addition of an effective catalyst

4. Nov/2021/Paper_12/No.16

Silver chloride and silver iodide form equilibria when added to water.

$$AgCl(s) \rightleftharpoons Ag^{+}(ag) + Cl^{-}(ag)$$
 $K_c = K_c$

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq)$$
 $K_c = K_2$

Each equilibrium position lies well to the left.

Silver iodide will not dissolve in aqueous ammonia. Silver chloride will dissolve in aqueous ammonia. Another equilibrium is formed.

$$Ag^{+}(aq) + 2NH_3(aq) \rightleftharpoons Ag(NH_3)_2^{+}(aq)$$
 $K_c = K_3$

bildos

The position of this equilibrium lies to the right.

What is the order of magnitude for these three equilibrium constants?

	smallest		largest
Α	<i>K</i> ₃	K ₂	<i>K</i> ₁
В	<i>K</i> ₃	<i>K</i> ₁	K ₂
С	K ₂	<i>K</i> ₁	<i>K</i> ₃
D	<i>K</i> ₁	K ₂	<i>K</i> ₃

5. Nov/2021/Paper_12/No.31

Four solutions, each of concentration 0.1 mol dm⁻³, were tested with a pH meter. The results are shown.

solution	formula of acid or base	рН
	-00	
acid 1	CH₃CO ₂ H	4
acid 2	HNO₃	1
base 1	CH₃NH₂	11
base 2	NaOH	14

Which statements explain these results?

- 1 Acid 2 has a lower pH than acid 1 because it is more soluble.
- 2 Base 2 has a higher concentration of hydroxide ions in solution than base 1.
- 3 Acid 1 dissociates less than acid 2.

6. Nov/2021/Paper_12/No.36

Which statements about ammonium chloride are correct?

- 1 It reacts with hot aqueous sodium hydroxide to produce an alkaline gas.
- 2 In solution, it reacts with aqueous silver nitrate to produce a white precipitate.

3

3 When solid, it reacts with concentrated sulfuric acid to produce chlorine.

Nov/2021/Paper_13/No.10

The equation shows that $H_2(g)$ and $I_2(g)$ react to form an equilibrium mixture.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 $\Delta H^{\Theta} = -9.6 \text{ kJ mol}^{-1}$

A mixture containing equal amounts of $H_2(g)$ and $I_2(g)$ is made at temperature \mathcal{T}_1 and the composition of the mixture is monitored. A graph of the results is shown.

The experiment is repeated at a lower temperature, T_2 .

8. Nov/2021/Paper_13/No.11

An element, Y, reacts according to the following sequence.

burns in
$$O_2$$
 O_2 O_3 white solid O_4 O_4 O_5 O_5 O_6 O_7 O_8 O

- A Na
- B Mg
- C Al

9. March/2021/Paper_12/No.9

In which reaction is water behaving as a Brønsted-Lowry base?

A
$$H_2O$$
 + Na \rightarrow NaOH + $\frac{1}{2}H_2$

B
$$H_2O + H_3PO_4 \rightarrow H_3O^+ + H_2PO_4^-$$

$$\textbf{C} \quad \text{H}_2\text{O} \, + \, \text{CaO} \, \rightarrow \, \text{Ca(OH)}_2$$

D NH₃ +
$$[Cu(H_2O)_6]^{2+} \rightarrow NH_4^+ + [Cu(H_2O)_5(OH)]^+$$

10. March/2021/Paper_12/No.10

A large excess of marble chips is reacted with 25 cm³ of 1.0 mol dm⁻³ hydrochloric acid at 40 °C.

How is the result different when the reaction is repeated with 60 cm³ of 0.5 mol dm⁻³ hydrochloric acid at 40 °C?

- A The reaction is faster and more of the products are made when the reaction is complete.
- B The reaction is faster and less of the products are made when the reaction is complete.
- C The reaction is slower and more of the products are made when the reaction is complete.
- **D** The reaction is slower and less of the products are made when the reaction is complete.

11. March/2021/Paper_12/No.31

A sample of 17.15 mol HI(g) is in dynamic equilibrium with 2.27 mol $H_2(g)$ and 2.84 mol $I_2(g)$ in a volume of 1 m³ at 764 K and 141 kPa.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Two equilibrium constants, K_c and K_p , can be calculated for this mixture.

Which statements about the equilibrium constants for this mixture are correct?

- 1 neither K_c nor K_p has any units
- 2 $K_c = 45.6$
- $K_c > K_p$

12. March/2021/Paper_22/No.1

The rate of chemical reactions is affected by changes in temperature and pressure.

(a) (i)	Draw a curve on the axes to show the Boltzmann distribution of energy of particles in a sample of gaseous krypton atoms at a given temperature.				
	Label the curve T1 and label the axes.				
		[2]			
(ii)	On the diagram in (a)(i), draw a second curve to show the distribution of energies of the krypton atoms at a higher temperature.	ne			
	Label the second curve T2.	[1]			
(b) The	e Boltzmann distribution assumes that the particles behave as an ideal gas.				
(i)	State two assumptions of the kinetic theory as applied to an ideal gas.				
	1				
	2				
	420	[2]			
(ii)	2.00 g of krypton gas, Kr(g), is placed in a sealed 5.00 dm³ container at 120 °C.				
	Calculate the pressure, in Pa, of Kr(g) in the container. Assume Kr(g) behaves as an ideal gas.				
	Show your working.				
	pressure = Pa	[3]			

(iii)	State and explain the conditions at which krypton behaves most like an ideal gas.
	[2]
	pton reacts with fluorine in the presence of ultraviolet light to make krypton difluoride, $\frac{1}{2}(g)$.
	$Kr(g) + F_2(g) \rightarrow KrF_2(g)$
	activation energy for the reaction, $E_a = +385 \mathrm{kJ}\mathrm{mol}^{-1}$
	enthalpy change of formation of KrF ₂ , $\Delta H_f = +60.2 \text{ kJ mol}^{-1}$
(i)	Use this information to complete the reaction profile diagram for the formation of KrF_2 . Label E_a and $\Delta H_{\rm f}$ on the diagram.
	Assume the reaction proceeds in one step.
	energy /kJ mol ⁻¹ progress of reaction
	[2]
(ii)	Explain, in terms of activation energy, $E_{\rm a}$, and the collision of particles, how an increase in temperature affects the rate of a chemical reaction.

[Total: 14]

13. June/2021/Paper_11/No.10

The diagram represents the Haber process for the manufacture of ammonia from nitrogen and hydrogen.

What is the purpose of the heat exchanger?

- A to cool the incoming gas mixture to avoid overheating the catalyst
- **B** to cool the reaction products and separate the NH₃ from unused N₂ and H₂
- C to warm the incoming gas mixture and shift the equilibrium to give more NH₃
- D to warm the incoming gas mixture and speed up the reaction

14. June/2021/Paper_12/No.10

3.60 moles of hydrogen gas and 2.00 moles of iodine vapour are placed in a reaction vessel which is then sealed and maintained at a constant temperature.

The equation for the reaction is shown.

$$H_2 + I_2 \rightleftharpoons 2HI$$

At equilibrium, 3.20 moles of hydrogen remain. All reactants and products are gaseous.

What is the value of K_p under these conditions?

- **A** 0.0313
- **B** 0.125
- **C** 0.156
- **D** 8.00

15. June/2021/Paper_12/No.14

A farmer requires a solid compound to raise the pH of the soil in a field from 5.5 to above 6.0.

Which compound could the farmer use?

- **A** (NH₄)₂SO₄
- B NH₄NO₃
- C Ca(OH)₂

8

D Ca(NO₃)₂

16. June/2021/Paper_12/No.35

Which oxides will cause a change in pH when added to water?

- CaO
- 2 Al_2O_3
- 3 SiO₂

17. June/2021/Paper_13/No.10

Nitrogen reacts with hydrogen to produce ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

A mixture of 2.00 mol of nitrogen, 6.00 mol of hydrogen and 2.40 mol of ammonia is allowed to reach equilibrium in a sealed vessel of volume 1 dm³. It is found that 2.32 mol of nitrogen were Carribation (do) present in the equilibrium mixture.

Which expression will give the value of K_c ?

- $(1.76)^2$ $(2.32)(6.96)^3$
- $(1.76)^2$ В $(2.32)(6.32)^3$
- $(2.08)^2$ $(2.32)(6.32)^3$
- $(2.40)^2$ D $(2.32)(6.00)^3$

18. June/2021/Paper_13/No.1

Compound X is an organic compound that contains 30.6% carbon, 3.8% hydrogen, 20.4% oxygen and 45.2% chlorine by mass.

What is the empirical formula of X?

- C C₃H₄OC*l*
- $D C_4H_3O_2Cl_2$

19. June/2021/Paper_23/No.2(c)

(c) Methanol is made by reacting carbon monoxide with hydrogen.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

Carbon monoxide and hydrogen react at 1.0 × 10⁷Pa and 200 °C. Eventually the reaction mixture reaches dynamic equilibrium.

The table shows the amounts of each species present in the mixture.

	CO(g)	H ₂ (g)	CH ₃ OH(g)
initial amount/mol	1.0	2.0	0
equilibrium amount/mol	0.030	0.060	0.97

(i)	Explain	what is	meant	by a	lynamic	equilibrium.	

(ii) Calculate the partial pressure of methanol vapour at equilibrium under these conditions. Pacam Show your working.

(iii) Write an expression for the equilibrium constant, K_p , for this reaction. State the units in your answer.