Halogen derivatives - 2021 AS

1. Nov/2021/Paper_12/No.21

Bromomethane, CH₃Br, decomposes in the stratosphere forming methyl free radicals and bromine free radicals.

Which row correctly describes this decomposition?

	type of bond fission	number of electrons in a bromine free radical				
Α	homolytic	35				
В	heterolytic	35				
С	homolytic	36				
D	heterolytic	36				
Nov/2021/Paper_12/No.24 Butanoic acid can be made from 1-bromopropane in two stages.						
	stage 1 $CH_3CH_2CH_2Br \rightarrow CH_3CH_2CH_2CN$					
	stage 2 CH ₃ CH ₂ CH ₂ CN	→ CH ₃ CH ₂ CH ₂ CO ₂ H	0			

2. Nov/2021/Paper_12/No.24

Which types of reaction are stage 1 and stage 2?

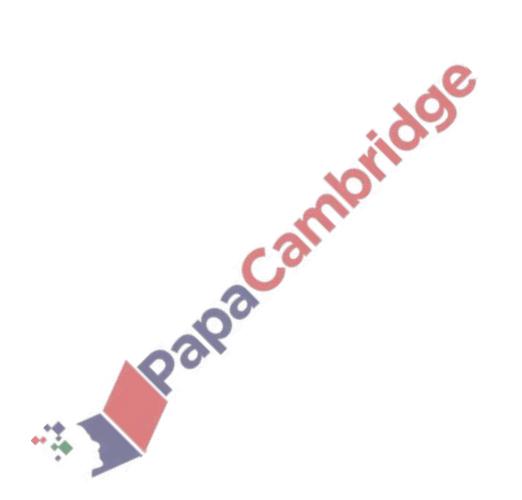
	stage 1	stage 2
Α	electrophilic addition	hydrolysis
В	electrophilic addition	oxidation
С	nucleophilic substitution	hydrolysis
D	nucleophilic substitution	oxidation

3. Nov/2021/Paper_12/No.25

A halogenoalkane has the molecular formula C₅H₁₁Br. The halogenoalkane does not form an alkene when treated with ethanolic sodium hydroxide.

What could be the halogenoalkane?

A 1-bromo-2-methylbutane


B 2-bromo-2-methylbutane

3-bromopentane

D 1-bromo-2,2-dimethylpropane

4. Nov/2021/Paper_12/No.39

- Which statements about chlorofluoroalkanes are correct?
 - 1 Both the C–Cl and C–F bonds are readily dissociated by ultra-violet light.
 - 2 They have caused ozone depletion.
 - 3 They are relatively chemically inert.

		21/Paper_22/No.1 en iodide, HI, is a c	colourless	gas at room temperature.
(a)	(i)	Explain why HI ha	as a highe	er boiling point than HC <i>l</i> and HBr.
				[2]
	(ii)	The bar chart sho shown.	ws the bo	oiling points of HC <i>l</i> , HBr and HI. The boiling point of HF is not
			300	
			280	
			260	10
		boiling	240	
		point/K		
			180	
			160	
				HF HC1 HBr HI
		Hydrogen bonds f	orm betwe	een HF molecules.
		Draw a bar on the	bar chart	to predict the boiling point of HF.
		Explain your answ	/er.	26
				[2]
(b)	The	e standard enthalpy	change o	of formation, $\Delta H_{\rm f}^{\bullet}$, of HI(g) is +26.5 kJ mol ⁻¹ .
	Def	fine the term <i>standa</i>	ard enthal	py change of formation.

5.

.....[2]

(c)		g) can be formed by reacting H ns quickly at high temperatures		n is reversible, and an equilibrium
		$H_2(g)$) + $I_2(g) \rightleftharpoons 2HI(g)$	
	(i)	Construct an expression for th to form $HI(g)$.	e equilibrium constant, $K_{ m p}$,	for the reaction of $H_2(g)$ and $I_2(g)$
	K_{p}	=		
				[1]
	(ii)	The equilibrium partial pressur	res of the gases at 200 °C	are as follows.
		Calculate $K_{\rm p}$ for this reaction.	$p_{H_2(g)} = 895 \text{Pa}$ $p_{I_2(g)} = 895 \text{Pa}$ $p_{HI(g)} = 4800 \text{Pa}$	atidos
((iii)	State how the value of K_p wou rather than 200 °C. Explain your answer.	ld change, if at all, if the re	K _p =[1]
				[2]

(d)	HI r	reacts with oxygen to form iodine and water.
	(i)	Construct an equation for the reaction of HI with oxygen.
	(ii)	Explain, with reference to oxidation numbers, why this reaction is a redox reaction.
		[2]
(e)	HI(g) can also be formed by the reaction of $I_2(g)$ with hydrazine, $N_2H_4(g)$.
		$2I_2(g) + N_2H_4(g) \rightarrow 4HI(g) + N_2(g)$
		te the change in pressure that would occur when 2 mol $I_2(g)$ fully reacts with 1 mol $N_2H_4(g)$ sealed container at constant temperature. Explain your answer.

(f) In the laboratory, HI(aq) can be formed in a two-step process.

$$\begin{array}{lll} \text{step 1} & 3I_2(s) \ + \ 2P(s) \ \rightarrow \ 2PI_3(s) \\ \\ \text{step 2} & PI_3(s) \ + \ 3H_2O(l) \ \rightarrow \ H_3PO_3(aq) \ + \ 3HI(aq) \end{array}$$

(i) Draw a 'dot-and-cross' diagram of a ${\rm PI_3}$ molecule.

		[2]
(ii)	Name the type of reaction in step 2.	
		[1]
(iii)	H ₃ PO ₃ (aq) and HI(aq) are both strong Brønsted–Lowry acids.	
	Give the meaning of the term strong Brønsted-Lowry acid.	
	.00	
		[2]
		[-]
(iv)	Give the formula of the conjugate base of H ₃ PO ₃ .	
		[1]

(g)	HI(g)	reacts	with	propene,	CH ₃ CH=CH ₂ (g)	to	form	а	mixture	of	1-iodopropane	and
	2-iodo	propane	₽.									

(i)	Identify which of 1-iodopropane and 2-iodopropane is the major product of this	reaction.
	Explain your answer.	
		[2]
ii)	Complete the diagram to show the mechanism of the reaction between HI and C that forms the major product identified in (g)(i).	H ₃ CH=CH ₂
	Include curly arrows, lone pairs of electrons and charges as necessary.	
	H ₃ C H	
	H H	
	H—I δ+ δ-	
		[3]
		[Total: 26]
	R	

March/2021/Paper_12/No.22

The diagram shows the structure of a bromo compound that may be formed by the reaction of bromine with a hydrocarbon.

Which row is correct?

	type of reaction	mechanism
Α	addition	electrophilic
В	addition	nucleophilic
С	substitution	nucleophilic
D	substitution	free-radical

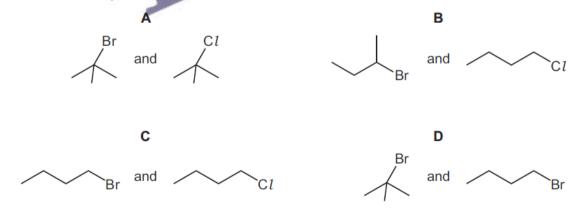
7. June/2021/Paper_11/No.37

Which statements are correct?

- 1 1,1-difluoroethane is less reactive than 1,1-dichloroethane.
- 2 1,1-difluoroethane is polar.
- 3 The C–F bond is stronger than the C–C*l* bond.

8. June/2021/Paper_12/No.25

Sodium methoxide, $Na^+CH_3O^-$, reacts with 2-chloro-2-methylpropane in a nucleophilic substitution reaction. The nucleophile is the CH_3O^- ion.


Which row is correct?

	intermediate or transition state	product	
Α	(CH ₃) ₃ C ⁺	(CH ₃) ₃ COCH ₃	
В	(CH ₃) ₃ C ⁺	(CH ₃)₃CCH ₂ OH	. 20
С	H ₃ C CH ₃ - CH ₃	HOCH ₂ C(CH ₃) ₃	
D	H ₃ C, CH ₃] - H ₃ COC <i>1</i> CH ₃	H ₃ COC(CH ₃) ₃	

9. June/2021/Paper_13/No.23

Halogenoalkanes react with nucleophiles such as OH-.

Which pair of halogenoalkanes both react via an S_N1 mechanism?

10. June/2021/Paper_13/No.37

The diagram shows a molecule of a compound used as a flame retardant.

Which statements about this structure are correct?

- 1 Each brominated C atom is chiral.
- 2 The molecular formula is C₁₂H₂₀Br₆.
- 3 The C-C-C bond angles are all 120°.

The responses A to D should be selected on the basis of

Α	В	С	D
1, 2 and 3 are correct	1 and 2 only are correct	2 and 3 only are correct	1 only is correct

No other combination of statements is used as a correct response.

11. June/2021/Paper_13/No.38

Bromoethane reacts with NaOH in different ways depending on the solvent used.

Which rows about these reactions are correct?

	solvent used	organic product
1	water	ethan-1,2-diol
2	ethanol	ethene
3	water	ethanol