<u>States of matter – 2021 AS</u>

1. Nov/2021/Paper_12/No.7

The strength of hydrogen bonding increases as the electronegativity of the element bonded to hydrogen increases.

Some information for a range of hydrides is given.

hydride	boiling point /K
PH₃	185
HCl	188
HF	293
H ₂ O	373

Which statement and reason about these hydrides is correct?

- A The boiling point of PH₃ is much lower than the boiling point of H₂O because PH₃ does not form hydrogen bonds or instantaneous dipole-induced dipole forces between its molecules.
- **B** The boiling point of HF is higher than the boiling point of HC1 because the bond energy of H_F is greater than the bond energy of H_C1 .
- **C** The boiling point of H₂O is higher than the boiling point of HF because each hydrogen bond between the H₂O molecules is stronger than each hydrogen bond between HF molecules.
- **D** The boiling points of PH₃ and HC*l* are similar because the molecules of PH₃ and HC*l* have the same number of electrons and similar intermolecular forces.

2. Nov/2021/Paper_12/No.8

The general gas equation can be used to calculate the value of the M_r of a gas.

For a sample of a gas of mass m grams, which expression will give the value of M_r ?

A
$$M_r = \frac{mRT}{pV}$$
 B $M_r = \frac{pVRT}{m}$ **C** $M_r = \frac{mpV}{RT}$ **D** $M_r = \frac{pV}{mRT}$

3. Nov/2021/Paper_13/No.5

Which type of interaction exists between water molecules and metal cations in aqueous solution?

- A dipole-dipole interactions
- B hydrogen bonds
- C ion-dipole interactions
- D ionic bonds

Nov/2021/Paper_13/No.6 4.

Which substance shows the greatest deviation from the properties of an ideal gas under room conditions?

A $CO_2(g)$ **B** $H_2(g)$ C Ne(g) **D** $NH_3(g)$

5. Nov/2021/Paper_13/No.33

Ethylene glycol, HOCH₂CH₂OH, is used as a de-icer. It allows ice to melt at temperatures below 0 °C.

Which statements are correct?

- 1 Ethylene glycol disrupts the extensive network of hydrogen bonds in ice.
- 2 Ethylene glycol molecules form hydrogen bonds with other ethylene glycol molecules.
- 3 Ethylene glycol molecules will dissolve in the water formed from the ice.

e glyce in the ice.

6. March/2021/Paper_12/No/.5

In which substance are the only intermolecular forces temporary dipole-induced dipole attractions?

- A hydrogen chloride
- B methanol
- C octane
- D water

Papacamonidose

7. June/2021/Paper_11/No.8

Which gas would behave most like an ideal gas under room conditions?

- A helium
- B nitrogen
- C ammonia
- D krypton

8. June/2021/Paper_12/No.5

Flask Q contains 5 dm³ of helium at 12 kPa pressure. Flask R contains 10 dm³ of neon at 6 kPa pressure.

If the flasks are connected at constant temperature, what is the final pressure?

A 8kPa 🛛 🛛 🛛 🖉 🖉 🖉 🖉 🖉

9. June/2021/Paper_12/No.6

Sodium chloride, water and air represent three states of matter - solid, liquid and gas.

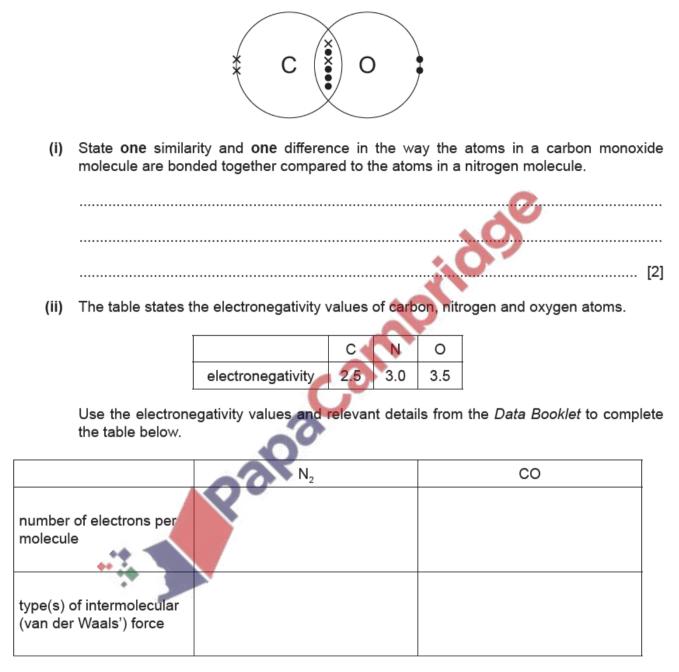
Which row is correct?

	sodium chloride	water	air	
A	particles held in rigid structure	can easily be compressed	can easily be compressed	
в	particles stationary	particles move	cannot easily be compressed	
С	particles stationary	particles stationary	particles move	
D	resistant to change of shape	cannot easily be compressed	can easily be compressed	

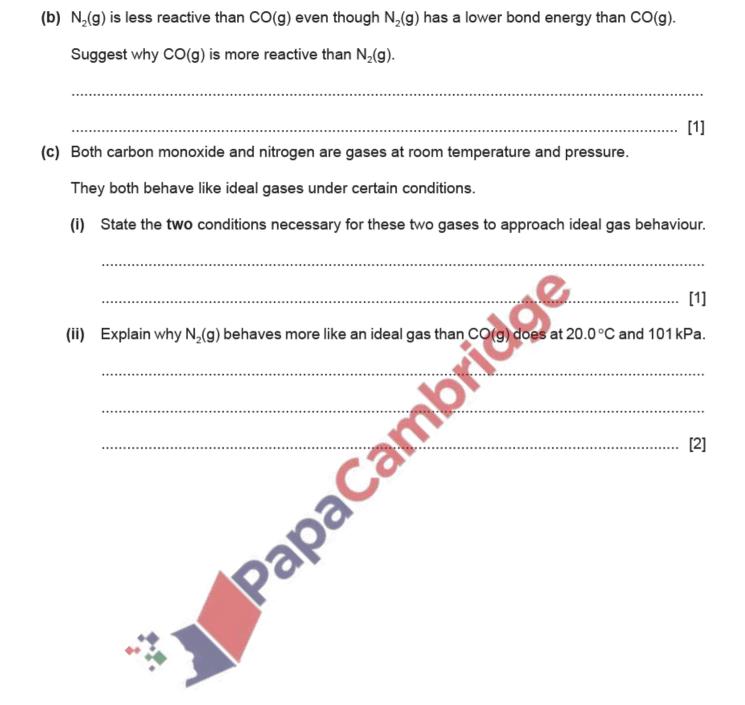
10. June/2021/Paper_13/No.24

A mixture of ethanol and methanol is burned in oxygen to produce 35 cm^3 of CO₂ and 55 cm^3 of H₂O.

Complete combustion occurs and the volumes of both products are measured at 101 kPa and 120 $^\circ\text{C}.$

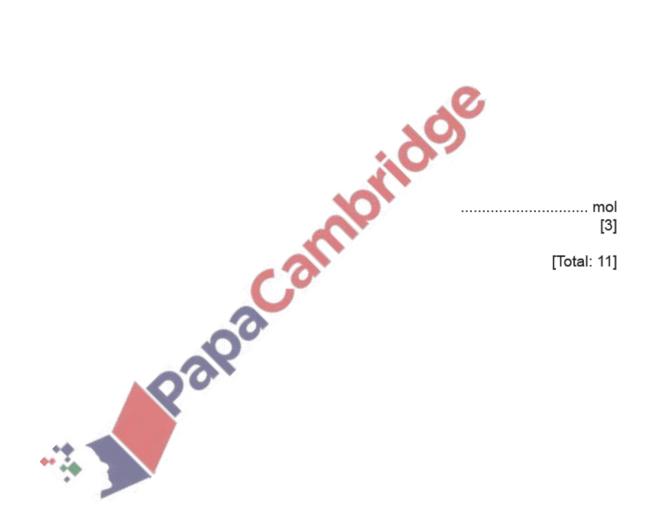

What is the molar ratio, ethanol: methanol, in the mixture?

A 1:3 B 2:3 C 3:2 D 3:1


11. June/2021/Paper_21/No.2

Carbon monoxide gas, CO(g), and nitrogen gas, N₂(g), are both diatomic molecules.

(a) The diagram shows the arrangement of outer electrons in a molecule of CO(g).


[2]

(d) Calculate the amount, in mol, of pure nitrogen gas which occupies 100 cm³ at 101 kPa and 20.0 °C.

Use relevant information from the Data Booklet. Show your working.

Assume nitrogen behaves as an ideal gas.

12. June/2021/Paper_22/No.2

The strength of interaction between particles determines whether the substance is a solid, liquid or gas at room temperature.

- (a) Lithium sulfide, Li₂S, is a crystalline solid with a melting point of 938 °C. It conducts electricity when it is molten.
 - (i) Give the formulae of the particles present in solid lithium sulfide.
- (ii) Explain, in terms of the structure of the crystalline solid, why lithium sulfide has a high melting point.[2] (b) Carbon monoxide, CO, is a gas at room temperature and pressure. It contains a coordinate bond. Explain what is meant by coordinate bond. (ii) Draw a 'dot-and-cross' diagram to show the arrangement of outer electrons in CO. Show the electrons belonging to the C atom as x. Show the electrons belonging to the O atom as .

- (c) Nitrogen, N₂, is also a gas at room temperature and pressure. Neither CO nor N₂ is an ideal gas.
 - (i) State two assumptions that are made about the behaviour of particles in an ideal gas.

	1					
	2					
				[2]		
(ii)	(ii) Explain why N ₂ does not behave as an ideal gas at very high pressures.					
			0			
		10		[2]		
(iii)	 i) Complete the table by naming all the types of intermolecular forces (van der Waals') in separate samples of N₂(g) and CO(g). 					
		N ₂ (g)	CO(g)			
number of electrons per molecule		14	14			
presence of a dipole moment		×	\checkmark			
boili	ng point/°C	-195.8	-191.5			
inter	molecular forces (van der Waals')					

(iv) Suggest why the bond in a molecule of CO contains a dipole moment.

......[1]

[Total: 13]

[2]