Analytical techniques – 2022 June AS Chemistry 9701

1. June/2022/Paper 11/No.40

A scientist chooses either infrared spectroscopy or mass spectrometry to find a particular piece of information.

In which row has the **best** choice been made?

		target information	analytic method used		
Α	ider	tities of functional groups in an organic compound	infrared spectroscopy		
В	ider	ntities of functional groups in an organic compound	mass spectrometry		
С		values of successive ionisation energies of Na	infrared spectroscopy		
D		values of successive ionisation energies of Na	mass spectrometry		
June/2022/Paper_12/No.40 Three organic compounds are listed.					
	1	ethanal			
	2	propan-1-ol			
	3	propan-2-ol			
Which compounds will have a mass spectrum that contains a fragment peak at $m/e = 43$?					

2. June/2022/Paper_12/No.40

- ethanal
- propan-1-ol
- 3 propan-2-ol

1 and 2 only **C** 2 and 3 only **D** 1, 2 and 3 1 only

3. June/2022/Paper_21/No.4(d)

(d) Fig. 5.1 shows the mass spectrum of ketone \mathbf{Z} , $C_5H_{10}O$.

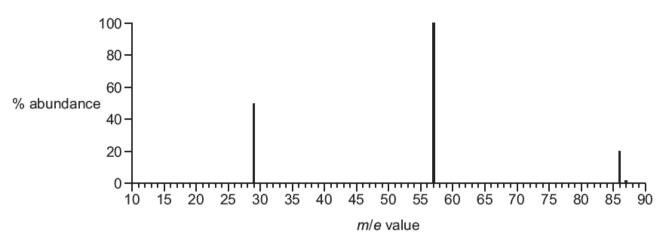


Fig. 5.1

Use the information in Fig. 5.1 to suggest the formulae of the fragments with m/e peaks at 29 and 57. Deduce the identity of **Z**.

 4. June/2022/Paper_22/No.4(c)

(c) X is an addition polymer.

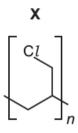



Fig. 4.3

(i) Draw the monomer of X.

5. June/2022/Paper_23/No.5(b)

(b) Z contains three types of atom: carbon, hydrogen and a halogen. The mass spectrum of Z is recorded. Fig. 5.1 shows a section of the mass spectrum at m/e greater than 63. The fragment at m/e = 64 is the molecular ion peak.

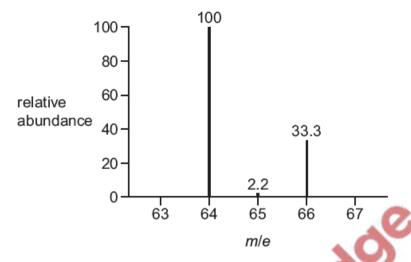


Fig. 5.1

(1)	Show your working.	[1]
(ii)	Deduce which halogen is present in Z using Fig. 5.1. Explain your answer.	
		[1]
iii)	There are also peaks at $m/e = 29$ and $m/e = 49$.	
	Suggest the formulae of these fragments. Deduce the name of Z .	
	m/e = 29	
	<i>m</i> /e = 49	
	name of Z	
		[3]