### 1. June/2022/Paper 11/No.1

Which atom has its outermost electron in an orbital of the shape shown, with principal quantum number 3?



- sodium
- chlorine
- calcium
- bromine

#### 2. June/2022/Paper 11/No.2

Which atom has the same number of electrons as the hydroxide ion, OH<sup>-</sup>?

A F B Ne C Na D Ma

### 3. June/2022/Paper 12/No.1

Equations involving four enthalpy changes are shown.

$$Na(g) \rightarrow Na^{+}(g) + e^{-}$$

$$Na(g) \rightarrow Na^{2+}(g) + 2e^{-}\Delta H = X$$

$$Na(s) \rightarrow Na(g)$$
  $\Delta H = Y$ 

$$Na(s) \rightarrow Na^{2+}(g) + 2e^{-} \Delta H = Z$$

Which equation represents the second ionisation energy of sodium?

- A X
- B X + Y W
- C X-W
- **D** Z W

# 4. June/2022/Paper\_12/No.2

This question refers to isolated gaseous atoms in the ground state.

In which atom are all electrons paired?

- A Ba
- **B** Br
- С S
- D Si

#### 5. June/2022/Paper\_12/No.6

Elements J and L are both in Group 15.

J and L each form a gaseous covalent hydride in which their oxidation number is -3.

In the liquefied forms of these hydrides, significant hydrogen bonding occurs only in the hydride of L.

bridge

Which row about J and L could be correct?

|   | identity<br>of J | identity<br>of L | outer shell electron configuration |
|---|------------------|------------------|------------------------------------|
| Α | As               | N                | p <sup>5</sup>                     |
| В | As               | N                | s <sup>2</sup> p <sup>3</sup>      |
| С | N                | As               | p <sup>5</sup>                     |
| D | N                | As               | $s^2p^3$                           |

#### **6.** June/2022/Paper\_13/No.1

Which atom has exactly three unpaired electrons in the ground state?

- A an isolated gaseous aluminium atom
- B an isolated gaseous carbon atom
- C an isolated gaseous chromium atom
- D an isolated gaseous phosphorus atom



#### 7. June/2022/Paper\_13/No.2

Which element has the **second** smallest atomic radius in its group and the **second** highest electrical conductivity in its period?

- A boron
- B calcium
- C magnesium
- **D** sodium

## 8. June/2022/Paper\_13/No.39

A sample of sulfur consists mostly of  $^{32}$ S. It also contains 4.2%  $^{34}$ S and 2.8%  $^{36}$ S. No other isotopes of sulfur are present.

What is the relative atomic mass,  $A_r$ , of this sample of sulfur?

**A** 32.1

**B** 32.2

C 34.0

**D** 34.3



# **9.** June/2022/Paper\_21/No.1(e)

(e) A sample of magnesium contains three isotopes,  $^{25}$ Mg,  $^{26}$ Mg and X.

The percentage abundance of the three isotopes is shown in Table 1.1.

Table 1.1

| isotope of Mg    | mass/a.m.u. | percentage<br>abundance/% |  |  |  |
|------------------|-------------|---------------------------|--|--|--|
| х                |             | 78.99                     |  |  |  |
| <sup>25</sup> Mg | 24.99       | 10.00                     |  |  |  |
| <sup>26</sup> Mg | 25.98       | 11.01                     |  |  |  |

| The relative atomic mass, A <sub>r</sub> , is calculated by comparing the average mass of the isotop<br>of an element to the unified atomic mass unit. | es  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Define the unified atomic mass unit.                                                                                                                   | [1] |
| i) Calculate the mass of <b>X</b> . Use data from Table 1.1 and $A_r$ (magnesium) = 24.31 in year                                                      |     |
| calculation. Show your working.                                                                                                                        |     |
|                                                                                                                                                        |     |
| mass of <b>X</b> =                                                                                                                                     | [2] |
| State one similarity and one difference in the properties of these isotopes of magnesiue Explain your answer.                                          | ım  |
|                                                                                                                                                        |     |
|                                                                                                                                                        | [2  |

| une/2022/Paper_23/I                       | No.1(a, b)  |            |             |                    |              |            |            |          |
|-------------------------------------------|-------------|------------|-------------|--------------------|--------------|------------|------------|----------|
| (a) Define first io                       | nisation e  | energy.    |             |                    |              |            |            |          |
|                                           |             |            |             |                    |              |            |            |          |
|                                           |             |            |             |                    |              |            |            |          |
|                                           |             |            |             |                    |              |            |            |          |
| ••••••                                    |             |            |             |                    |              |            |            |          |
| (b) Successive id                         | onisation ( | energies 1 | for elemer  | nt <b>A</b> are sl | nown in Ta   | able 1.1.  |            |          |
|                                           |             |            | Tabl        | le 1.1             |              |            |            |          |
| ionisation                                | 1st         | 2nd        | 3rd         | 4th                | 5th          | 6th        | 7th        | 8th      |
| ionisation<br>energy/kJ mol <sup>-1</sup> | 1310        | 3390       | 5320        | 7450               | 11 000       | 13300      | 71 000     | 84 100   |
| Use Table 1.1                             | to deduc    | e the arou | in of the P | eriodic Ta         | hle that A   | helongs to | Explain    | vour ans |
|                                           |             | e the grot |             | criodic ru         | DIC CIGCA    | Delotigo t | J. EXPIGIT | your and |
| Group                                     |             |            |             |                    | S            |            |            |          |
|                                           |             |            |             |                    | <del>\</del> |            |            |          |
|                                           |             |            |             |                    |              |            |            |          |
|                                           |             |            |             | 0                  |              |            |            |          |
|                                           |             |            |             |                    |              |            |            |          |
|                                           |             |            | 20          |                    |              |            |            |          |
|                                           |             | -0         | Og          |                    |              |            |            |          |
|                                           |             | 00         |             |                    |              |            |            |          |
|                                           |             |            |             |                    |              |            |            |          |
| **                                        |             | 1          |             |                    |              |            |            |          |
| ***                                       |             | V          |             |                    |              |            |            |          |
|                                           | 100         |            |             |                    |              |            |            |          |