Atoms, molecules and stoichiometry – 2022 June AS Chemistry 9701

1. June/2022/Paper_11/No.3

In separate experiments, 5.0 g samples of each of four s-block metals are added to an excess of water. The gas evolved is collected and its volume measured under the same conditions of temperature and pressure for each sample.

Which metal produces the largest volume of gas?

- A calcium
- **B** potassium
- C rubidium
- **D** strontium

2. June/2022/Paper_11/No.4

A student reacts 1 mol of copper with concentrated nitric acid to produce 1 mol of copper(II) nitrate, 2 mol of water and substance X. No other product is formed.

Substance X does not contain copper or hydrogen.

What could be substance X?

- **A** N₂
- **B** N₂O
- C NO
- D NO

3. June/2022/Paper_11/No.7

'Black powder' is a mixture of potassium nitrate, carbon and sulfur. The mixture reacts as shown.

$$4\mathsf{KNO}_3(s) \ + \ 7\mathsf{C}(s) \ + \ \mathsf{S}(s) \ \to \ 3\mathsf{CO}_2(g) \ + \ 3\mathsf{CO}(g) \ + \ 2\mathsf{N}_2(g) \ + \ \mathsf{K}_2\mathsf{S}(s) \ + \ \mathsf{K}_2\mathsf{CO}_3(s)$$

A sealed tube containing black powder has a volume of $10.0 \,\mathrm{cm^3}$. When all of the black powder reacts, the reaction causes a pressure of $2 \times 10^6 \,\mathrm{Pa}$ and a temperature of $2500 \,\mathrm{K}$.

The volume of the K_2CO_3 and K_2S produced can be ignored.

How many moles of KNO₃ are contained in the sealed tube?

- **A** 4.81×10^{-4}
- **B** 9.63×10^{-4}
- **C** 1.93×10^{-3}
- **D** 9.63 × 10⁻¹

4. June/2022/Paper_11/No.11

A student reacts 4 mol of ammonia with oxygen to produce an oxide of nitrogen and water only. Each nitrogen atom increases its oxidation state by 5 in the reaction.

How many moles of oxygen gas react with 4 mol of ammonia in this reaction?

- A 4 mol
- B 5 mol
- C 7 mol
- **D** 10 mol

5. June/2022/Paper_11/No.16

A 3.0 g sample of Na₂CO₃ powder is stirred into $50\,\mathrm{cm^3}$ of $1.0\,\mathrm{mol\,dm^{-3}}$ HC l. The volume of CO₂ produced is $600\,\mathrm{cm^3}$.

$$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$

[M_r: Na₂CO₃, 106.0]

Which volume of CO_2 is produced if $1.0\,\mathrm{g}$ of Na_2CO_3 powder is stirred into $50\,\mathrm{cm}^3$ of $1.0\,\mathrm{mol\,dm}^{-3}\,\mathrm{HC}\mathit{l}$ under the same conditions?

- **A** 600 cm³
- **B** 452 cm³
- C 226 cm³
- **D** 200 cm³

6. June/2022/Paper 12/No.3

Which sample contains the most iodine?

- A 1g of CaI₂
- B 1g of KI
- C 1g of NaI
- D 1g of NH₄I

7. June/2022/Paper_12/No.4

When a small sample of hydrocarbon Q is completely combusted, it produces 3.52g of carbon dioxide and 1.44g of water.

What could be the structure of hydrocarbon Q?

Α

H-C=C-C=C-F

8. June/2022/Paper_13/No.3

Analysis of the hormone thyroxine gives the results shown.

Heating 0.500 g of thyroxine with aqueous silver nitrate produces 0.604 g of silver iodide. All of the iodine in the thyroxine sample is converted to silver iodide.

Complete combustion of 0.500 g of thyroxine produces 232 cm³ of carbon dioxide and 7.72 cm³ of nitrogen, measured under room conditions.

2

Which molecular formula of thyroxine agrees with these values?

- **A** $C_{15}H_{11}NO_4I_4$ $M_r = 776.6$
- **B** $C_{15}H_7NO_4I_8$ $M_r = 1280.2$
- **C** $C_{30}H_{25}NO_6I_4$ $M_r = 1002.6$
- **D** $C_{30}H_{21}NO_6I_8$ $M_r = 1506.2$

9.	June/2022/Paper_13/No.4	
	· · · · · · · · · · · · · · · · · · ·	

How many moles of oxygen, O₂, are needed to burn 1 mol of ethane if the products of the reaction are water and carbon only?

A 1.5

B 3

C 3.5

D 5

10. June/2022/Paper_13/No.8

A student reacts 1 mol of magnesium powder in a sealed $0.030\,\text{m}^3$ container of oxygen at a pressure of $2.0\times10^5\,\text{Pa}$ and a temperature of 600 K. The magnesium reacts completely to form MgO.

Which percentage of the oxygen will be used up?

A 5.0%

B 10%

C 42%

D 83%

11. June/2022/Paper_21/No.4(a)

Compound V is a liquid.

V contains 77.2% carbon, 11.4% hydrogen and 11.4% oxygen by mass.

V has a relative molecular mass of 280.

(a) Calculate the molecular formula of V. Show your working.

molecular formula of V =[3]

12. June/2022/Paper_23/No.1(e, f)

(e) An isotope of copper has a relative isotopic mass of 65.

Complete Table 1.2 for an atom of copper-65.

Table 1.2

	atomic number	nucleon number	number of neutrons	electronic arrangement
copper-65				

(f)	(i)	The elemer	at conne	r has a rolativo	atomic mass of	f 63 5	[3]	
(')	(1)	The element copper has a relative atomic mass of 63.5.						
		Calculate h	ow man	y atoms are pre	esent in 1.05g o	of copper.		
						Orilo		
					atoms of c	opper present =	[1]	
	(ii)	Copper has	a melti	ng point of 108	5°C and a high	electrical conductivity.		
		Explain the	se prope	erties of copper		its structure and bonding		
				00				
				X				
		49.1						