Carbonyl compounds – 2022 June AS Chemistry 9701

1. June/2022/Paper_11/No.27

Which compound will react with LiA1H4 to form two optical isomers?

- A CH₃CH₂COCH₃
- B CH₃CH₂CH₂CHO
- C CH₃CH₂COCH₂CH₃
- D CH₃CH(CH₃)CH₂CO₂H

2. June/2022/Paper_11/No.35

The skeletal formulae of two organic compounds are shown.

Which reagents can be used to distinguish these two compounds?

- 1 alkaline I₂(aq)
- 2 acidified K₂Cr₂O₇
- 3 2,4-dinitrophenylhydrazine (2,4-DNPH reagent)
- A 1, 2 and 3 B 1 and 3 only C 2 and 3 only D 2 only

3. June/2022/Paper_11/No.36

A carbonyl compound, X, reacts with HCN in the presence of NaCN to make a compound with M_r 85. Compound X does **not** react with Fehling's reagent.

What is compound X?

- A butanal
- B butanone
- C propanal
- D propanone

4. June/2022/Paper_12/No.34

Which reaction has a product that gives a yellow precipitate when treated with alkaline $I_2(aq)$?

- A 2-chloropropane is warmed with a dilute aqueous solution of sodium hydroxide.
- $\textbf{B} \quad \text{Ethanal is heated under reflux with acidified potassium dichromate}(VI).$
- C Methyl ethanoate is heated under reflux with dilute sulfuric acid.
- **D** Propanal is reacted with NaBH₄, followed by dilute sulfuric acid.

5. June/2022/Paper_12/No.36

Which compound forms a precipitate when mixed with 2,4-DNPH reagent and also forms a precipitate when mixed with Fehling's reagent?

A B C D

6. June/2022/Paper_12/No.37

Which reaction is a redox reaction?

- A ethanenitrile heated under reflux with dilute hydrochloric acid
- B ethanoic acid reacted with aqueous sodium hydroxide
- C ethanoic acid reacted with sodium
- D ethyl ethanoate heated under reflux with dilute hydrochloric acid

7. June/2022/Paper_13/No.26

Compound X contains an alcohol group and a carbonyl group.

Which row is correct?

	type of alcohol group	type of carbonyl group
Α	primary	aldehyde
В	primary	ketone
С	tertiary	aldehyde
D	tertiary	ketone

8. June/2022/Paper_13/No.30

Limonene is found in lemon and orange oils.

limonene

What is the major product when limonene reacts with an excess of dry hydrogen chloride?

A B C D Cl Cl Cl Cl Cl

9. June/2022/Paper_13/No.33

Structural isomerism only should be considered when answering this question.

Several compounds with molecular formula C₄H₈O₂ have one carbonyl group and one OH group.

How many of these compounds produce yellow crystals with alkaline $I_2(aq)$ at room temperature?

A 2

B 3

C 4

D 5

10. June/2022/Paper_13/No.36

A carbonyl compound has the structural formula CH_3COCHO .

Which row is correct for the observations made when this compound is treated with the given reagents?

	2,4-DNPH reagent	Fehling's reagent
Α	silver mirror	red precipitate
В	silver mirror	orange precipitate
С	orange precipitate	silver mirror
D	orange precipitate	red precipitate

11. June/2022/Paper_21/No.3(c, d)

(c) Fig. 3.2 shows two reactions of T.

Fig. 3.2

(i)	Identify a suitable reagent for reaction 1.	[1]
(ii)	Identify the reagent and conditions needed for reaction 2.	
iii)	Suggest which product formed in reaction 2 has a higher yield. Explain your answer.	[2]
,		
40		[3]

(d) Separate samples of **Q** and **R** are added to separate test-tubes containing acidified K₂Cr₂O₇(aq) and heated.

Fig. 3.3

Predict the observations for each test-tube. Explain your answer in terms of the functional groups present in Q and R .		
. 29		
[3]		

(ii) When PC1₅(s) is added to separate samples of Q and R at room temperature, both react vigorously.

Complete the equation shown in Fig. 3.4 to describe the reaction that occurs when R reacts with $PCl_s(s)$.

equation to support your answer.

Suggest why samples of ${\bf Q}$ and ${\bf R}$ must be dried before ${\rm PC}l_5$ is added. Include a relevant

[2]

......[2]

12. June/2022/Paper_21/No.4(c)

(c) W, X and Y have the same molecular formula, $C_5H_{10}O$.

W, **X** and **Y** are added separately to different reagents. Observations for these reactions are described in Table 4.1.

Table 4.1

	+ 2,4-dinitrophenylhydrazine	+ alkaline I ₂ (aq)	+ Fehling's reagent and warm
W	orange precipitate seen	no change	orange-red precipitate seen
Χ	orange precipitate seen	yellow precipitate seen	no change
Υ	orange precipitate seen		

(i)	W, X and Y each contain a common functional group.		
	Name the functional group that is present in all three compounds		
	[1]		
(ii)	State the formula of the yellow precipitate produced when ${\bf X}$ is added to alkaline ${\bf I_2}({\bf aq})$.		
	[1]		
(iii)	W could be one of four structural isomers.		

Draw the skeletal formulae for two possible structural isomers of W.

Describe the type of structural isomerism shown.

isomer 1

isomer 2

type of structural isomerism

13. June/2022/Paper_23/No.3(b, c)

(c) K has molecular formula C₃H₆O.
When K is added to 2,4-dinitrophenylhydrazine, an orange precipitate forms.
When K is warmed with Tollens' reagent, a silver mirror forms.

Draw the displayed formula of K.

