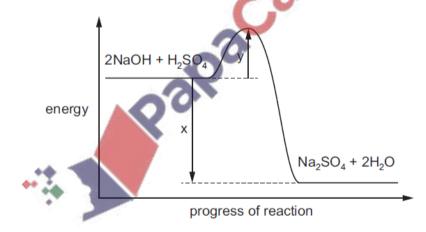
Chemical energetics – 2022 June AS Chemistry 9701

1. June/2022/Paper 11/No.9

The equation for an enthalpy change is shown. The enthalpy change is Q.


$$2C(s) + 3H_2(g) + 3.5O_2(g)$$
 Q $2CO_2(g) + 3H_2O(l)$

What is the correct expression to calculate Q?

- A $2 \times \Delta H_c^{\bullet}[CO_2(g)] 3 \times \Delta H_f^{\bullet}[H_2(g)]$
- **B** $3 \times \Delta H_f^{\bullet}[H_2O(g)] + 2 \times \Delta H_c^{\bullet}[CO_2(g)]$
- **C** $2 \times \Delta H_f^{e}[CO_2(g)] 3 \times \Delta H_f^{e}[H_2(g)]$
- **D** $3 \times \Delta H_f^{\bullet}[H_2O(I)] + 2 \times \Delta H_f^{\bullet}[CO_2(g)]$

2. June/2022/Paper_11/No.10

A reaction pathway diagram for the reaction of aqueous sodium hydroxide and dilute sulfuric acid is shown.

What is the value of the enthalpy change of neutralisation, ΔH_{neut} ?

- **A** x
- **B** x y
- $c = \frac{x}{2}$
- $D \qquad \frac{(x-y)^2}{2}$

bildoe

3. June/2022/Paper_12/No.9

The standard enthalpy of formation of $NO_2(g)$ is $+33.2 \text{ kJ mol}^{-1}$.

The standard enthalpy of formation of $N_2O_4(g)$ is $+9.2 \text{ kJ mol}^{-1}$.

What is the standard enthalpy change for the reaction $2NO_2(g) \rightarrow N_2O_4(g)$?

A -57.2 kJ mol⁻¹

B -24.0 kJ mol⁻¹

C +42.4 kJ mol⁻¹

D +75.6 kJ mol⁻¹

4. June/2022/Paper 12/No.10

Separate samples of 25.0 cm³ of 0.1 mol dm⁻³ NaOH(aq) are added to each of three different acid solutions, as described. The temperature of each of the solutions was 298 K before mixing.

sample	acid	type of acid	concentration / mol dm ⁻³	volume / cm ³
1	H ₂ SO ₄	strong	0.05	25.0
2	HC1	strong	0.05	25.0
3	CH₃CO₂H	weak	0.05	25.0

Which statement describes the temperature rises that occur on mixing each of these three acids separately with NaOH?

A The temperature rise in all three mixtures is the same.

B The temperature rise using H₂SO₄ and HC1 is the same.

C The temperature rise using CH₃CO₂H is greater than using HC1.

D The greatest temperature rise occurs using H₂SO₄.

5. June/2022/Paper 13/No.9

Which equation represents an enthalpy change that is the average bond energy of the C–H bond in methane?

2

A $\frac{1}{4}$ C(g) + H(g) $\rightarrow \frac{1}{4}$ CH₄(g)

 $\textbf{B} \quad \tfrac{1}{4}\,\mathsf{CH}_4(\mathsf{g}) \,\to\, \tfrac{1}{4}\,\mathsf{C}(\mathsf{g}) \,+\, \mathsf{H}(\mathsf{g})$

 $C \quad CH_4(g) \rightarrow C(g) + 4H(g)$

 $\textbf{D} \quad \text{CH}_4(g) \, \rightarrow \, \text{CH}_3(g) \, + \, \text{H}(g)$

6. June/2022/Paper 13/No.10

Magnesium carbonate decomposes when heated in a Bunsen burner flame.

Values for the standard enthalpies of formation, ΔH_t^{\bullet} , of the species involved are shown.

$$\Delta H_f^{\bullet} \text{ MgCO}_3 = -1095.8 \text{ kJ mol}^{-1}$$

$$\Delta H_{7}^{\circ} \text{ MgO} = -601.7 \text{ kJ mol}^{-1}$$

$$\Delta H_f^{\circ} CO_2 = -393.5 \text{ kJ mol}^{-1}$$

What is the standard enthalpy change for the decomposition of magnesium carbonate?

- A +100.6 kJ mol⁻¹
- +887.6 kJ mol⁻¹
- C +1095.8 kJ mol⁻¹
- D +2091 kJ mol⁻¹

7. June/2022/Paper_21/No.1(f)

- oridae (f) Magnesium, Mg, burns in oxygen, O2. The activation energy, E_a , for this reaction is +148 kJ mol
 - (i) State one observation when magnesium burns in oxygen. Do not refer to temperature changes in your answer.

- (ii) On Fig. 1.1:
 - sketch a reaction pathway diagram for the reaction that occurs when Mg burns in O2
 - label the diagram to show the enthalpy change, ΔH , and the activation energy, E_a , for the reaction.

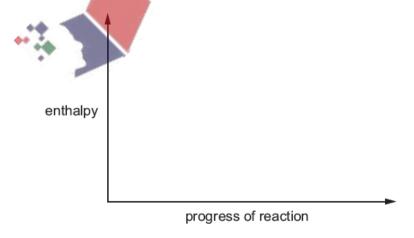


Fig. 1.1

[3]

8. June/2022/Paper_22/No.1(b)

- (b) When magnesium is heated in air, magnesium oxide, MgO, is the major product. Smaller amounts of magnesium nitride, Mg₃N₂, are also made.
 - Calculate the oxidation number for magnesium and for the nitrogen species in Mg₃N₂ to complete Table 1.1.

Table 1.1

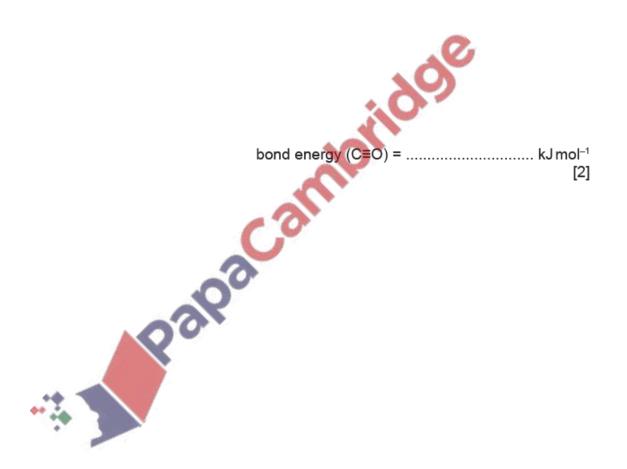
species	magnesium in Mg ₃ N ₂	nitrogen in Mg ₃ N ₂
oxidation number		

[1]

(ii)	Identify the type of reaction which take Explain your answer.	s place between magnesium and nitrogen.
iii)	Define enthalpy change of formation.	[1]

(iv) When 3.645g of Mg(s) burns in excess $N_2(g)$ to form Mg₃N₂(s), 23.05kJ of energy is released.

Calculate the enthalpy change of formation, $\Delta H_{\rm f}$, of Mg₃N₂. Show your working.


$$\Delta H_{\rm f} \left({\rm Mg_3N_2} \right) = \dots$$
 [3]

9. June/2022/Paper_23/No.3a(ii)

(ii) Calculate the bond energy of C≡O using the bond energy values in Table 3.1 and the enthalpy change, ∆H, for the thermal decomposition of **G**. Show your working.

Table 3.1

bond	bond energy/kJmol ⁻¹
C-C	350
C-O (in G)	360
C–H	410

