Equilibria – 2022 June AS Chemistry 9701

1. June/2022/Paper_11/No.13

Ethanoic acid is mixed with ethanol.

The ethanol is contaminated with a small amount of methanol.

The following equilibria are established.

$$CH_3CO_2H(I) + CH_3CH_2OH(I) \iff CH_3CO_2CH_2CH_3(I) + H_2O(I)$$
 $K_c = K_1$

$$CH_3CO_2H(I) + CH_3OH(I) \rightleftharpoons CH_3CO_2CH_3(I) + H_2O(I)$$
 $K_c = K_2$

Which statement about the equilibrium mixture is correct?

- A Only ethyl ethanoate will be formed because there is much more ethanol present than methanol.
- In this mixture $\frac{[CH_3CO_2CH_2CH_3]}{[CH_3CO_2CH_3]} = \frac{K_1}{K_2}.$
- Adding water to the mixture will alter the mole ratio of the two esters.
- Palpa anni **D** Adding methyl ethanoate to the mixture will increase the number of moles of ethyl ethanoate.

2. June/2022/Paper_11/No.14

 SO_3 is manufactured from SO_2 and O_2 in the Contact process.

The reaction is exothermic.

Which row shows the effect on the equilibrium yield obtained in the Contact process of increasing the temperature and of adding a vanadium(V) oxide catalyst?

	increasing the temperature	adding vanadium(V) oxide as catalyst	
Α	equilibrium yield decreases equilibrium yield increase		
В	equilibrium yield decreases	equilibrium yield unchanged	
С	equilibrium yield increases	equilibrium yield unchanged	
D	equilibrium yield increases	equilibrium yield increases	

3. June/2022/Paper_12/No.13

A synthesis for methanol is shown.

$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$$
 $\Delta H = -49 \text{ kJ mol}^{-1}$

Which conditions would produce the greatest yield of methanol at equilibrium?

	pressure	temperature/°C	
Α	high	80	
В	high	20	
С	low	80	
D	low	20	

4. June/2022/Paper_12/No.14

Hydrogen and iodine can react reversibly to produce hydrogen iodide. The equation is shown.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

4.00 mol of hydrogen gas and X mol of iodine vapour are mixed in a sealed container of volume 1.00 dm³ at a temperature of 460 K. The system is allowed to reach equilibrium.

The equilibrium mixture contains 2.00 mol of hydrogen iodide. The equilibrium constant, K_c , for the reaction at 460 K is 4.0.

What is the value of X?

A 0.50 mol B 1.17 mol C 1.33 mol D

D 2.50 mol

5. June/2022/Paper 12/No.16

The Haber process for the manufacture of ammonia is represented by the equation shown.

2

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$

Which statement is correct about this reaction when the temperature is increased?

A Both forward and backward rates increase.

B The backward rate only increases.

C The forward rate only increases.

D There is no effect on the backward or forward rates.

6. June/2022/Paper_13/No.13

Which statement about acids and bases is always correct?

- A An acid with two H atoms per molecule will be stronger than an acid with one H atom per molecule.
- B A concentrated solution of a strong acid will have a lower pH than a dilute solution of a weak
- C A concentrated solution of a strong base will have a lower pH than a dilute solution of a weak base.
- **D** A strong acid is more dissociated in solution than a strong base.

7. June/2022/Paper 13/No.14

The reaction between sulfur dioxide and oxygen is reversible.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $K_c = 280 \,\text{mol}^{-1} \,\text{dm}^3 \,\text{at} \, 1000 \,\text{K}$

In an equilibrium mixture at 1000 K the sulfur trioxide concentration is 6.00 mol dm⁻³.

3

The sulfur dioxide concentration is twice the oxygen concentration.

What is the sulfur dioxide concentration?

- **A** 0.175 mol dm⁻³
- **B** 0.252 mol dm⁻³
- ${\bf C}$ 0.318 mol dm⁻³
- **D** 0.636 mol dm⁻³

8. June/2022/Paper_21/No.2(d)

(d) 25 cm³ of 0.10 mol dm⁻³ HCl(aq) is added to a beaker and its pH is recorded.

 $50\,\mathrm{cm^3}$ of $0.10\,\mathrm{mol\,dm^{-3}}$ NH₃(aq) is added to the HC $l(\mathrm{aq})$ in $5\,\mathrm{cm^3}$ portions.

The pH of the mixture is monitored until all the NH₃(aq) is added.

HC1 is a strong Brønsted-Lowry acid.

(i) Describe what is meant by a strong Brønsted-Lowry acid.

.....

(ii) NH₃ is a weak base.

Construct an equation that shows the behaviour of NH₃ as a weak Brønsted-Lowry base when dissolved in water.

_____[1]

(iii) On Fig. 2.1 sketch a graph to show the change in pH which occurs when HCl(aq) is titrated with NH₃(aq) as described in (d).

Fig. 2.1

[2]

9. June/2022/Paper_22/No.3(a_ d)

(a) 0.025 mol of HI(g) is added to a closed vessel and left to reach dynamic equilibrium. The total pressure of the vessel is 100 kPa.

equation 1
$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

(i) Explain what is meant by dynamic equilibrium.

ro.

(ii) Describe **one** difference in the initial appearance of the reaction mixture compared to the mixture at equilibrium.

.....[1

(iii) Write an expression for K_p for the reaction described in equation 1.

$$K_p =$$

[1]

(iv) At equilibrium the partial pressure of HI(g) is 86.4 kPa.

Calculate the amount of HI(g) present in the mixture at equilibrium. Show your working.

amount of HI(g) = mol [2]

(b) Use equation 1 and the bond energy values in Table 3.1 to calculate the change in enthalpy, ΔH , for the thermal decomposition of 1 mole of HI(g). Show your working.

Table 3.1

bond	bond energy/kJ mol ⁻¹
H–H	436
I–I	151
H–I	299

		$\Delta H = 1$
(c)	Des	scribe the effect of increasing pressure on the value of K_p for the decomposition of HI(g).
		741 141
		[1]
(d)	HC	$l(g)$ is prepared by adding NaC $l(s)$ to concentrated H_2SO_4 .
		g) is not prepared by adding NaI(s) to concentrated H_2SO_4 because the HI(g) produced reacts with concentrated H_2SO_4 .
	(i)	Identify the type of reaction that occurs when NaI(s) reacts with concentrated $\rm H_2SO_4$ to form HI(g).
		[1]
	(ii)	Write an equation for the reaction of $HI(g)$ and concentrated H_2SO_4 .
		[1]
	(iii)	Explain why $\mathrm{HI}(\mathrm{g})$ reacts with concentrated $\mathrm{H_2SO_4}$ whereas $\mathrm{HC}\mathit{l}$ does not.
		[1]

10.	June/2022	/Paper_	_22/No.3	a(iii_ iv)	
-----	-----------	---------	----------	------------	--

(iii) When **G**, C₄H₁₀O, is heated in a sealed container, an equilibrium mixture is produced.

$$C_4H_{10}O(g) \rightleftharpoons C_2H_6(g) + CO(g) + CH_4(g)$$

Complete the expression for the equilibrium constant, K_c , for this reaction. State the units of K_c .

$$K_c =$$

(iv) Thermal decomposition of $\bf G$ in the presence of $\bf I_2$ affects the activation energy, $\bf E_a$, for the reaction. Table 3.2 shows $\bf E_a$ for the thermal decomposition of $\bf G$ with and without $\bf I_2$.

Table 3.2

reaction	$E_{\rm a}$ (with $I_{\rm 2}$)/kJ mol ⁻¹	E _a /kJ mol⁻¹
$C_4H_{10}O(g) \rightarrow C_2H_6(g) + CO(g) + CH_4(g)$	143	224

State what effect adding I_2 to the reaction mixture has on the value of K_c .
Explain your answer.
500
[2]