Halogen compounds – 2022 June AS Chemistry 9701

1. June/2022/Paper_11/No.31

Structural isomerism and stereoisomerism should be taken into account when answering this question.

How many isomeric alkenes with formula C5H8 are present in the mixture produced when 1,4-dibromopentane is reacted with NaOH in ethanol?

- **A** 1
- **B** 2
- **C** 3
- D

2. June/2022/Paper_11/No.32

The presence of a halogen in an organic compound may be detected by warming the organic compound with aqueous silver nitrate.

Which compound would be the quickest to produce a precipitate?

Α Cl В

$$Cl$$
 Cl
 Cl
 F

3. June/2022/Paper_12/No.30

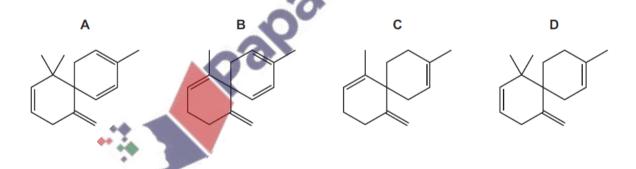
The alkene shown reacts with an excess of HBr via an electrophilic addition reaction.

What is the major product formed?

- 3,5-dibromo-2-methylhexane
- 2,5-dibromo-2-methylhexane
- 2,6-dibromo-2-methylhexane
- **D** 3,6-dibromo-2-methylhexane

4. June/2022/Paper_13/No.31

Which statement concerning the hydrolysis of 1-bromopropane with water is correct?


- A The hydrolysis reaction between water and 1-iodopropane is faster because the C–Br bond is less polar than the C–I bond.
- **B** The hydrolysis reaction with water is very slow because water is a weak electrophile.
- C The mechanism of the reaction involves the formation of a stable carbocation.
- **D** The reaction is slower with 1-chloropropane because the C-C1 bond is stronger than the C-Br bond.

5. June/2022/Paper_13/No.32

Compound J, C₁₅H₂₃Br₂C1, is reacted with an excess of a hot concentrated solution of sodium hydroxide in ethanol. One of the products is X.

compound J

What could be the skeletal formula of X?

6. June/2022/Paper_13/No.35

Which reaction has a nucleophilic addition mechanism and gives a good yield of product under the stated conditions?

2

- A 1-bromopropane reacting with hot ethanolic sodium hydroxide
- **B** 2-iodopropane reacting with hot aqueous sodium hydroxide
- C propanal reacting with hydrogen cyanide under alkaline conditions
- **D** propanal reacting with hydrogen cyanide under acidic conditions

7. June/2022/Paper_22/No.4(b)

(b) Halothane is an anaesthetic.

halothane

Fig. 4.1

(i) Identify the chiral centre in halothane and mark it with an asterisk (*).

When halothane reacts in ultraviolet light, homolytic fission occurs and the C-Br bond is broken.

(ii) Construct an equation to show the homolytic fission of halothane, CF₃CHBrC1.

.....[1]

(iii) Complete Fig. 4.2 to show the arrangement of electrons in a bromine atom using the electrons in boxes notation.

Fig. 4.2

[1]

8. June/2022/Paper_22/No.5

Fig. 5.1 shows three reactions of 2-bromopropane, CH₃CH(Br)CH₃.

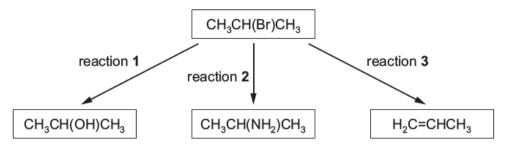


Fig. 5.1

- (a) Complete Table 5.1 for each reaction, by:
 - · stating the reagent and conditions used
 - · identifying the type of reaction that occurs.

Table 5.1

reaction	reagent and conditions	type of reaction
1		101.
2		
3	20	

[6]

(b) A sample of 2-iodopropane, CH₃CH(I)CH₃, reacts under the same conditions as reaction 1 to produce CH₃CH(OH)CH₃.

Explain why 2-iodopropane reacts at a faster rate than 2-bromopropane.

(c) Fig. 5.2 shows how butan-1-ol can be made from 1-bromopropane in three steps.

Fig. 5.2

(i) In step 1, 1-bromopropane reacts with CN- to form butanenitrile.

Complete Fig. 5.3 to show the mechanism for step 1. Include charges, dipoles, lone pairs of electrons and curly arrows as appropriate.

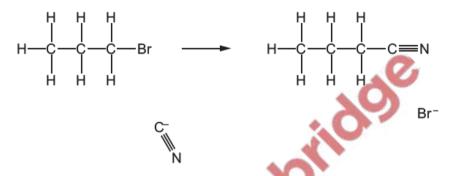


Fig. 5.3

[2]

(ii) In step 2, butanenitrile is heated with HC1(aq). A hydrolysis reaction occurs.

Construct an equation for the reaction in step 2.

.....[1]

(iii) Step 3 is a reduction reaction.

Construct an equation for the reduction reaction in step 3. Use [H] to represent one atom of hydrogen from the reducing agent.

[1]

(iv) State the identity of a suitable reducing agent in step 3.

.....[1]

[Total: 13]

9. June/2022/Paper_23/No.4

- (a) 2-methylpropene reacts with HCl(g) at room temperature. The major organic product is 2-chloro-2-methylpropane.
 - (i) Complete Fig. 4.1 to show the structure of the intermediate and mechanism for this reaction. Include charges, dipoles, lone pairs of electrons and curly arrows as appropriate.

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

H-Cl

Fig. 4.1

[3]

(ii) Explain why, in this reaction, 2-chloro-2-methylpropane is produced at a higher yield than 1-chloro-2-methylpropane.

.....[2]

(b) Two bottles labelled Q and M each contain a straight-chain halogenoalkane with molecular formula C₄H₃X, where X represents C1, Br or I.

A sample from each bottle is added to separate samples of equal amounts of aqueous silver nitrate in ethanol. In each reaction, the same organic product, **T**, and a precipitate are made, as shown in Fig. 4.2.

Table 4.1 describes the colour of each of the precipitates made.

Table 4.1

halogenoalkane added to AgNO ₃ (aq) in ethanol	colour of precipitate
Q	white
M	yellow

i)	Identify the functional group present in ${\bf T}$ and name the type of reaction that occurs using the information in Fig. 4.2 and Table 4.1.
	functional group in T
	type of reaction[2]
(ii)	Construct an ionic equation to describe the formation of the yellow precipitate produced when M reacts with $AgNO_3(aq)$ in ethanol.
	[1]
(iii)	Describe which reagent, Q or M , will produce a precipitate more quickly when each is added to AgNO ₃ (aq) in ethanol. Explain your answer.
	reagent
	[1]
iv)	When pure ${\bf T}$ is added to alkaline ${\bf I_2}({\bf aq})$, a yellow precipitate and an anion, ${\bf L}$, are made.
	Identify the anion L.
	[1]
(v)	Deduce the structure of the straight-chain halogenoalkane M.
	[2]
	[Total: 12]