1. June/2022/Paper_11/No.30

Oct-1-ene, CH₃(CH₂)₅CH=CH₂, can be thermally cracked.

Which of the compounds W, X, Y and Z can be obtained by thermally cracking oct-1-ene?

W

Χ

- Ζ

- CH₂=CH₂
- CH₃CH=CH₂
- CH₃CH₂CH₃
- CH₂=CHCH=CH₂

- A W, X, Y and Z
- B W, X and Y only
- C W, X and Z only
- **D** W and X only

2. June/2022/Paper_12/No.5

es. All louis de la company de Ethane and ethene are both hydrocarbon molecules.

What is a feature of both molecules?

- A a planar structure
- B bond angles of 109°
- C σ covalent bonds
- **D** π covalent bonds

3. June/2022/Paper_12/No.26

A skeletal formula is shown.

What is the total number of stereoisomers including the one shown?

- **A** 4
- **B** 6
- 8 С
- **D** 16

4. June/2022/Paper_12/No.27

The molecular formula CH₃ can represent an anion, a cation or a free radical. Species with the molecular formula CH₃ can act as an electrophile, a free radical or a nucleophile depending on the number of outer shell electrons on the central carbon atom.

How many outer shell electrons on the central carbon atom must be present for CH_3 to act in these different ways?

	CH ₃ as an electrophile	CH ₃ as a free radical	CH ₃ as a nucleophile
Α	6	7	8
В	6	8	7
С	7	6	8
D	8	7	6

5. June/2022/Paper_12/No.28

Compound Z, C₇H₁₃Br, has two chiral centres. A sample of Z contains all four possible optical isomers.

This sample of Z reacts with hot ethanolic NaOH to produce a mixture of **only** three isomers. Two of these isomers are optical isomers of each other.

What could be the formula of Z?

6. June/2022/Paper_12/No.29

The free-radical substitution reaction between methane and chlorine involves initiation, propagation and termination stages.

Which row is correct?

	involved in initiation stage	radical produced in a propagation stage
Α	homolytic fission	H•
В	homolytic fission	CH₃•
С	heterolytic fission	Н•
D	heterolytic fission	CH₃•

7.	June/2022/Paper_	_13/No.29
----	------------------	-----------

Structural isomerism and stereoisomerism should be considered when answering this question.

Y is a gaseous hydrocarbon which decolourises aqueous bromine.

10.0 g of Y occupies a volume of 3.43 dm³ under room conditions.

How many isomeric structures are possible for Y?

A 4

B 5

C

D 7

8. June/2022/Paper_21/No.3(a, b)

Liquids that contain molecules of T smell like lemons.

Fig. 3.1

(a) Molecules of T exist as a pair of stereoisomers.

Name the type of stereoisomerism shown by	molecules of T . Explain your answer.
	[2]
	[

(b) Two organic products are produced when a sample of T is heated under reflux with excess acidified concentrated KMnO₄.

Draw the structure of the two organic products, from this reaction, in the boxes.

[2]

9.		22/Paper_21/No.4(b) contains two types of functional group: a carboxylic acid and an alkene.
	(i)	Describe a chemical test and observation which confirms the presence of a carboxyl functional group.
		[2]
	(ii)	A 3.196 g sample of Br_2 reacts completely with 2.800 g of V .
		Calculate how many alkene functional groups are present in one molecule of ${\bf V}.$ Show your working.
		number of alkene functional groups in V =[1]

10. June/2022/Paper_22/No.4(a)

(a) Bromine reacts with butane in the presence of ultraviolet light to form bromobutane.

Two structural isomers with the molecular formula C_4H_9Br are produced during this reaction.

(i) Draw the two structural isomers and state the systematic name of each isomer.

structural isomer 1
name

[2]

(ii) Identify the type of structural isomerism shown in (a)(i).

11. June/2022/Paper_22/No.6(a, b)

Z is a molecule which contains the elements carbon, hydrogen and oxygen only.

Z contains only alkene and carboxyl functional groups.

(a) Complete Table 6.1 by describing the observations that occur when two different reagents are added to separate samples of **Z**(aq).

Table 6.1

reagent added to Z (aq)	observation
Br ₂ (aq)	
Na ₂ CO ₃ (s)	0

[2]

(b) Table 6.2 shows the percentage by mass of each element present in Z.

Table 6.2

element	percentage by mass/%
carbon	41.38
hydrogen	3.45
oxygen	55.17

Using the data in Table 6.2, demonstrate that the empirical formula of ${\bf Z}$ is CHO. Show your working.

