<u>Chemical bonding – Nov June AS Chemistry 9701</u>

1. Nov/2022/Paper_11/No.6

Which molecule has an equal number of bonding electrons and lone-pair electrons?

- A BH_3
- B CO₂
- **C** F₂O
- **D** SO₂

bridge

2. Nov/2022/Paper_11/No.7

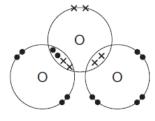
The table shows properties of four solids held together by different types of bonding.

Which row correctly describes the properties of a solid with a giant covalent structure?

	melting point	solubility in polar solvents
Α	high	insoluble
В	high	soluble
С	low	insoluble
D	low	soluble

3. Nov/2022/Paper_12/No.12

The compound $(CH_3)_3NAlCl_3$ has a simple molecular structure.

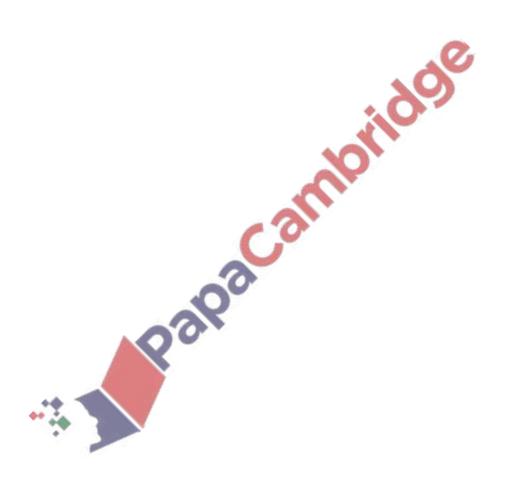

Which statement about (CH₃)₃NA*l*C*l*₃ is correct?

- **A** $(CH_3)_3NAlCl_3$ molecules attract each other by hydrogen bonds.
- **B** The Al atom in $(CH_3)_3NAlCl_3$ has an incomplete valence shell of electrons.
- C The bonds around the Al atom are planar.
- **D** The molecules contain coordinate bonding.

4. Nov/2022/Paper_12/No.13

VSEPR theory should be used in answering this question.

The dot-and-cross diagram for an ozone, O_3 , molecule is shown.



What is the predicted bond angle in this molecule?

- **A** 107°
- **B** 109.5°
- C 117°
- **D** 120°

Spe	ecies such as NH ₄ +, CO ₃ ²⁻ and PO ₄ ³⁻ are examples of molecular ions.		
(a)	lonic and covalent bonds both involve an electrostatic attraction between different species.		
	Identify the species that are electrostatically attracted to one another in:		
	an ionic bond		
	a covalent bond.		
	[2]		

5. Nov/2022/Paper_22/No.1(a)

