Chemical energetics – 2022 Nov AS Chemistry 9701

1. Nov/2022/Paper_11/No.9

The enthalpy changes of formation, $\Delta H_{\rm f}^{\rm e}$, of both PC l_3 and PC l_5 are exothermic.

 PCl_3 reacts with chlorine.

$$PCl_3(I) + Cl_2(g) \rightarrow PCl_5(s)$$
 $\Delta H_{reaction}^{\bullet} = -124 \text{ kJ mol}^{-1}$

Which pair of statements is correct?

	statement 1	statement 2
Α	$\Delta H_{\rm reaction}^{\bullet}$ is less negative than $\Delta H_{\rm f}^{\bullet}$ (PC $l_{\rm 5}$).	The Cl_2 bond energy is needed in calculating $\Delta H^{\Theta}_{\operatorname{reaction}}$ from enthalpies of formation.
В	$\Delta H_{\rm reaction}^{f e}$ is more negative than $\Delta H_{\rm f}^{f e}$ (PC $l_{\rm 5}$).	The Cl_2 bond energy is needed in calculating $\Delta H^{\bullet}_{\text{reaction}}$ from enthalpies of formation.
С	$\Delta H_{\rm reaction}^{ m e}$ is less negative than $\Delta H_{\rm f}^{ m e}$ (PC $l_{\rm 5}$).	The $\mathrm{C}l_2$ bond energy is not needed in calculating $\Delta H^{\Theta}_{\mathrm{reaction}}$ from enthalpies of formation.
D	$\Delta H_{\rm reaction}^{ m e}$ is more negative than $\Delta H_{\rm f}^{ m e}$ (PC $l_{\rm 5}$).	The $\mathrm{C}l_2$ bond energy is not needed in calculating $\Delta H^{\mathrm{e}}_{\mathrm{reaction}}$ from enthalpies of formation.

2. Nov/2022/Paper_11/No.10

A student mixes $25.0\,\mathrm{cm^3}$ of $0.350\,\mathrm{mol\,dm^{-3}}$ sodium hydroxide solution with $25.0\,\mathrm{cm^3}$ of $0.350\,\mathrm{mol\,dm^{-3}}$ hydrochloric acid. The temperature increases by $2.5\,\mathrm{^{\circ}C}$. No heat is lost to the surroundings.

The final mixture has a specific heat capacity of 4.2 J cm⁻³ K⁻¹.

What is the molar enthalpy change for the reaction?

- **A** −150 kJ mol⁻¹
- **B** -60 kJ mol⁻¹
- C -30 kJ mol⁻¹
- **D** -0.15 kJ mol⁻¹

3. Nov/2022/Paper_12/No.9

The reaction pathway for the forward reaction of a reversible reaction is shown.

Which statement is correct?

- The activation energy of the reverse reaction is +80 kJ mol⁻¹.
- В The enthalpy change for the forward reaction is +30 kJ mol⁻¹.
- Pacamonido The enthalpy change for the forward reaction is +50 kJ mol⁻¹. С
- The enthalpy change for the reverse reaction is +30 kJ mol⁻¹. D

4. Nov/2022/Paper 12/No.10

The enthalpy changes for the possible reactions W, X, Y and Z are given.

W NaOH(aq) + HC
$$l$$
(aq) \rightarrow NaC l (aq) + H $_2$ O(I) $\Delta H^{\circ} = -56 \text{ kJ mol}^{-1}$

X NaCl(aq) + H₂O(l)
$$\rightarrow$$
 NaOH(aq) + HCl(aq) ΔH° = +56 kJ mol⁻¹

Y
$$2HI(g) \rightarrow H_2(g) + I_2(g)$$
 $\Delta H^{\circ} = +11 \text{ kJ mol}^{-1}$

Z
$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$
 $\Delta H^{\circ} = -11 \text{ kJ mol}^{-1}$

2

Which statement about the activation energies of these reactions is correct?

- A X is greater than W; Z is greater than Y.
- **B** X is greater than W; Y is greater than Z.
- **C** W is greater than X; Z is greater than Y.
- **D** W is greater than X; Y is greater than Z.

5. Nov/2022/Paper_12/No.16

Use relevant enthalpy changes from the tables to answer this question.

reaction	$\Delta H / \text{kJ mol}^{-1}$
$C(s) + 2H_2(g) \rightarrow CH_4(g)$	-76
$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$	– 890
$CH_4(g) \rightarrow C(g) + 4H(g)$	1648
$3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$	– 105

bond	bond enthalpy /kJ mol ⁻¹
H–H	436
C-C	350
C=C	610
C=O	805

Which value can be calculated for the enthalpy change for the following reaction?

$$2C(g) + 6H(g) \rightarrow C_2H_6(g)$$

- **A** -2822 kJ mol⁻¹
- **B** -2122 kJ mol⁻¹
- **C** -1998 kJ mol⁻¹
- **D** -1772 kJ mol⁻¹

6.	Nov/2022/Paper_	21/No.30	(b)
•	110 1/2022/1 upci_	_21/110.5(<u>u</u>)

(d)	Sulfur, S ₈ , reacts with chlorine to form several different chlorides. The most common are S ₂ Cl ₂
	and SCl_2 . SCl_3 forms when sulfur reacts with an excess of chlorine.

reaction 1
$$S_8(s) + 4Cl_2(g) \rightarrow 4S_2Cl_2(I)$$
 $\Delta H_r = -58.2 \, \text{kJ mol}^{-1}$
reaction 2 $S_2Cl_2(I) + Cl_2(g) \rightleftharpoons 2SCl_2(I)$ $\Delta H_r = -40.6 \, \text{kJ mol}^{-1}$

(i) SCl_2 is a cherry-red liquid that reacts vigorously with water to form an acidic solution.

Use this information to deduce the bonding and structure shown by SC1₂.

Explain your answer.

[2]

(ii) Calculate the enthalpy change of formation, $\Delta H_{\rm f}$, of SC l_2 (I). You may find it useful to use Hess's Law to construct an energy cycle.

acannik

.....

Fig. 3.1 shows the two structural isomers of $\mathrm{S_2C}\,l_2.$

only.

Fig. 3.1

(iv)	Define the term structural isomer.
	[2]
(v)	Suggest a value for the C1-S-S bond angle in isomer I. Explain your answer.
	bond angle =
	explanation
	[2]
(vi)	Draw a dot-and-cross diagram to show the bonding in isomer II. Show outer shell electrons

[2]