Equilibria – 2022 Nov AS Chemistry 9701

1. Nov/2022/Paper 11/No.13

In which equilibrium reaction is the position of equilibrium moved to the right-hand side by increasing the temperature and also by decreasing the pressure?

A
$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$
 $\Delta H = 40 \text{ kJ mol}^{-1}$

B
$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$
 $\Delta H = 58 \text{ kJ mol}^{-1}$

C
$$2SO_2(g) + O_2(g) \implies 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

D
$$2HI(g) \iff H_2(g) + I_2(g)$$
 $\Delta H = -10 \text{ kJ mol}^{-1}$

2. Nov/2022/Paper_11/No.14

Ethanol is produced industrially by reacting ethene and steam.

$$C_2H_4(g) \ + \ H_2O(g) \ \Longleftrightarrow \ C_2H_5OH(g)$$

idde

 K_p has a value of 1.8×10^{-5} and the partial pressures of the reactants at equilibrium are shown.

reactant	partial pressure /kPa
ethene	4.8 × 10 ³
steam	2.8 × 10 ³

Which row is correct?

	partial pressure of ethanol at equilibrium/kPa	units of K_p
Α	2.42 × 10 ²	kPa ⁻¹
В	2.42×10^{2}	kPa
С	7.47×10^{11}	kPa ^{−1}
D	7.47 × 10 ¹¹	kPa

3. Nov/2022/Paper_12/No.7

Hydrogen peroxide decomposes slowly at 20 °C to form water and oxygen.

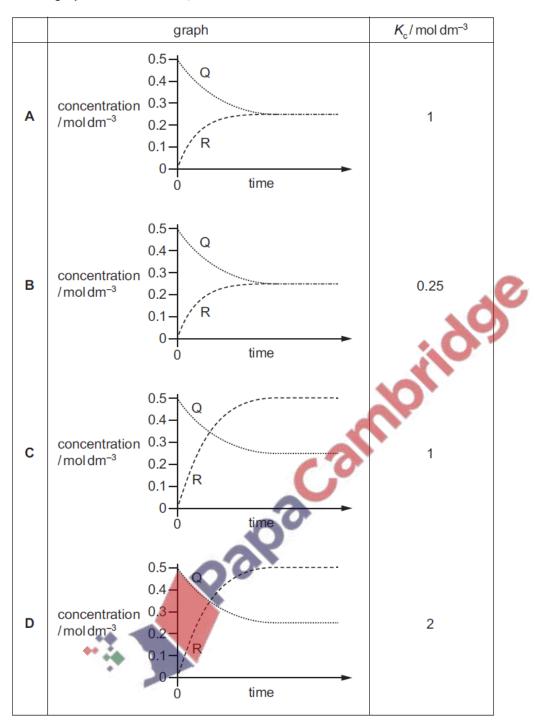
$$2H_2O_2 \rightleftharpoons 2H_2O + O_2$$
 equilibrium constant = K_c

The reaction is faster when a catalyst is present.

Which statement is correct?

- A The catalyst alters the Boltzmann distribution so that the reactant molecules have more energy.
- The catalyst has no effect on the value of K_c . В
- С The catalyst increases the value of K_c .
- D The catalyst provides a different reaction mechanism with a higher activation energy.

4. Nov/2022/Paper_12/No.8


nic ear A dimer, Q, is stable when solid but a dynamic equilibrium is set up in solution.

$$Q(aq) \rightleftharpoons 2R(aq)$$

A solution of Q has an initial concentration of 0.50 mol dm⁻³. When equilibrium has been reached, [Q(aq)] has fallen to 0.25 mol dm⁻³.

The changes in [Q(aq)] and [R(aq)] are plotted against time until equilibrium is reached. The value of K_c is then calculated.

2

5. Nov/2022/Paper_12/No.11

The Haber process is carried out with a nitrogen partial pressure of 50 kPa, a hydrogen partial pressure of 150 kPa, a temperature of 400 °C and an iron catalyst.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

If all other conditions are kept the same, which change will result in a raised activation energy?

- A Both the nitrogen and hydrogen partial pressures are changed to 100 kPa.
- **B** The iron is removed.
- C The nitrogen partial pressure is increased to 150 kPa.
- **D** The temperature is increased to 500 °C.

6. Nov/2022/Paper_22/No.1(c)

- (c) NH₄⁺ is a Brønsted-Lowry acid.
 - (i) Define Brønsted-Lowry acid.

[1]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ridge

(ii) When NH₄⁺(aq) is heated with NaOH(aq), a pungent gas is produced.

Write an ionic equation for this reaction.

a de la companya de	\frown	
2		[1]
	4	Γ.1

(iii) The nitrogen atom in NH₄* is sp³ hybridised. sp³ orbitals form from the mixing of one 2s and three 2p orbitals.

Sketch the shapes of a 2s and a $2p_x$ orbital on the axes in Fig. 1.1.

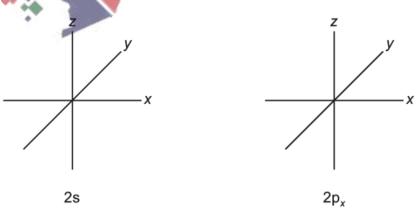
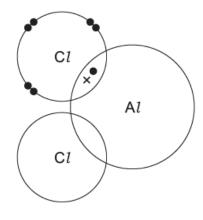



Fig. 1.1

- 7. Nov/2022/Paper_22/No.2(c)
 - (c) In the gas phase, $AlCl_3(g)$ exists at equilibrium with $Al_2Cl_6(g)$ as shown.

equation 1
$$2AlCl_3(g) \rightleftharpoons Al_2Cl_6(g)$$
 $\Delta H_r = -63 \text{ kJ mol}^{-1}$

(i) Complete the dot-and-cross diagram to show the bonding in Al_2Cl_6 .

[2]

(ii) State the effect of an increase in temperature on the equilibrium mixture in equation 1. Explain your answer.

[1]

[1]