Hydrocarbons – 2022 Nov AS Chemistry 9701 1. Nov/2022/Paper_11/No.5 How many σ bonds are present in one H-C≡C-C(CH₃)=CH(CH₃) molecule? **A** 5 B 11 13 **D** 16 ### 2. Nov/2022/Paper 11/No.35 Structural isomerism and stereoisomerism should be considered when answering this question. How many isomeric compounds with molecular formula C₅H₆O₄ contain two –CO₂H groups and one C=C double bond? **A** 5 **B** 6 С 7 #### 3. Nov/2022/Paper 12/No.28 Which pair includes a hydrocarbon without a chiral centre? CH₃CH(CH₃)CH(CH₃)CH₂CH₃ A CH₃CH₂CH₂CH(CH₃)CH₂CH₃ CH₃CH₂CH₂CH(CH₃)CH₂CH₃ **B** CH₃CH₂CH₂CH(CH₂CH₃)CH₃ CH₃CH₂CH(CH₃)CH(CH₃)₂ C CH₃CH₂CH₂CH(CH₃)CH₂CH₃ D CH₃CH(CH₂CH₃)CH(CH₃)CH₃ CH₃CH(CH₃)CH₂CH(CH₃)₂ # 4. Nov/2022/Paper 12/No.30 cis-but-2-ene reacts with cold dilute acidified potassium manganate(VII) solution to give product X. cis-but-2-ene reacts with hot concentrated acidified potassium manganate(VII) solution to give product Y. Which row describing the reactions of X and Y is correct? | | when sodium metal is added to separate samples of X and Y | when sodium hydroxide solution is added to separate samples of X and Y | | |---|---|--|--| | Α | both X and Y will react | neither X nor Y will react | | | В | both X and Y will react | only one of X and Y will react | | | С | only one of X and Y will react | neither X nor Y will react | | | D | only one of X and Y will react | only one of X and Y will react | | # **5.** Nov/2022/Paper_21/No.4 Organic compounds can be distinguished using chemical tests. Table 4.1 shows four pairs of compounds. Table 4.1 | organic compounds | | reagent | positive result of
chemical test on
identified compound | |-------------------|-------------|---------|---| | A1
0
0 | A2
OH | | | | B1 | B2 | did | 50 | | C1 | C2 | almo | | | D1
OH
HO OH | D2
HO OH | | | - (a) Complete Table 4.1 to: - identify a reagent that could distinguish between the compounds in each pair - give the positive result of the chemical test and identify which compound shows this result. Use a different reagent for each test. [8] (b) C1 has melting point -94 °C and boiling point +49 °C. | Explain these properties by referring to the type of va | an der Waals' forces between molecules. | |---|---| | | | | | | | | | | | | | | ro | | | | | [1] | |-----|------|---|-----| | (d) | C2 | forms a polymer when heated gently. | | | | (i) | Identify the type of polymer that forms from C2. | [1] | | | (ii) | Draw one repeat unit of the polymer formed from C2. | | | | | Califi | | | | | 100 | [2] | | | | [Total: 1 | 4] | (c) Draw the structure of the cis isomer of C2. ### **6.** Nov/2022/Paper_22/No.3(a, b) Organic compounds can be distinguished using chemical tests and analytical techniques. (a) Table 3.1 shows four pairs of organic compounds. Table 3.1 | organic compounds | | reagent | positive result of
chemical test on
identified compound | |-------------------|--------------|---------|---| | A1
O
H | A2 O | | | | B1 | B2
O | wild | | | C1
O | C2 | allin | | | D1
CH₃
OH | D2 OH | | | - (i) Complete Table 3.1 to: - identify a reagent which can distinguish between the compounds in each pair - give the positive result of the chemical test and identify which compound shows this result Use a different reagent for each test. [8] (ii) A1 and A2 are structural isomers. Define structural isomers. | (iii) | Give the systematic name of B2 . | | |--------|--|-----| | | | [1] | | (iv) | Deduce the molecular formula of D1. | | | | | [1] | | (b) D2 | forms polymer Z when heated gently. | | | (i) | Identify the type of polymer that forms from D2 . | | | | | [1] | | (ii) | Draw one repeat unit of polymer Z. | | | | Palpace | [2] | # Table 3.2 | bond | functional group containing the bond | characteristic infrared absorption range (in wavenumbers)/cm ⁻¹ | |------|--------------------------------------|--| | C-O | hydroxy, ester | 1040–1300 | | C=C | aromatic compound, alkene | 1500–1680 | | C=O | amide
carbonyl, carboxyl
ester | 1640–1690
1670–1740
1710–1750 | | C≡N | nitrile | 2200–2250 | | C-H | alkane | 2850–3100 | | N–H | amine, amide | 3300–3500 | | O–H | carboxyl
hydroxy | 2500–3000
3200–3650 | Both spectra show absorptions between 2850 and 2950 cm⁻¹ owing to C-H bonds in each molecule. | (i) | Use the two infrared spectra and Table 3.2 to identify the functional group present only in E . | |------|---| | | Explain your answer, referring only to absorptions at frequencies greater than 1500 cm ⁻¹ . | | | functional group | | | explanation | | | | | (ii) | Use the infrared spectrum of F to identify the functional group formed when E reacts with cold dilute acidified KMnO ₄ (aq). | | | Explain your answer, referring only to absorptions at frequencies greater than 1500 cm ⁻¹ . | | | explanation | | | [1] | | iii) | The mass spectrum of E shows a molecular ion peak and an M+2 peak of approximately equal abundance at $m/e = 120$ and 122. | | | Deduce the relative molecular mass, $M_{\rm r}$, of E . | | | $M_{\rm r} = \dots $ [1] |