Hydrocarbons – 2022 Nov AS Chemistry 9701

1. Nov/2022/Paper_11/No.5

How many σ bonds are present in one H-C≡C-C(CH₃)=CH(CH₃) molecule?

A 5

B 11

13

D 16

2. Nov/2022/Paper 11/No.35

Structural isomerism and stereoisomerism should be considered when answering this question.

How many isomeric compounds with molecular formula C₅H₆O₄ contain two –CO₂H groups and one C=C double bond?

A 5

B 6

С 7

3. Nov/2022/Paper 12/No.28

Which pair includes a hydrocarbon without a chiral centre?

CH₃CH(CH₃)CH(CH₃)CH₂CH₃ A CH₃CH₂CH₂CH(CH₃)CH₂CH₃

CH₃CH₂CH₂CH(CH₃)CH₂CH₃ **B** CH₃CH₂CH₂CH(CH₂CH₃)CH₃

CH₃CH₂CH(CH₃)CH(CH₃)₂ C CH₃CH₂CH₂CH(CH₃)CH₂CH₃

D CH₃CH(CH₂CH₃)CH(CH₃)CH₃ CH₃CH(CH₃)CH₂CH(CH₃)₂

4. Nov/2022/Paper 12/No.30

cis-but-2-ene reacts with cold dilute acidified potassium manganate(VII) solution to give product X.

cis-but-2-ene reacts with hot concentrated acidified potassium manganate(VII) solution to give product Y.

Which row describing the reactions of X and Y is correct?

	when sodium metal is added to separate samples of X and Y	when sodium hydroxide solution is added to separate samples of X and Y	
Α	both X and Y will react	neither X nor Y will react	
В	both X and Y will react	only one of X and Y will react	
С	only one of X and Y will react	neither X nor Y will react	
D	only one of X and Y will react	only one of X and Y will react	

5. Nov/2022/Paper_21/No.4

Organic compounds can be distinguished using chemical tests.

Table 4.1 shows four pairs of compounds.

Table 4.1

organic compounds		reagent	positive result of chemical test on identified compound
A1 0 0	A2 OH		
B1	B2	did	50
C1	C2	almo	
D1 OH HO OH	D2 HO OH		

- (a) Complete Table 4.1 to:
 - identify a reagent that could distinguish between the compounds in each pair
 - give the positive result of the chemical test and identify which compound shows this
 result.

Use a different reagent for each test.

[8]

(b) C1 has melting point -94 °C and boiling point +49 °C.

Explain these properties by referring to the type of va	an der Waals' forces between molecules.
	ro

			[1]
(d)	C2	forms a polymer when heated gently.	
	(i)	Identify the type of polymer that forms from C2.	[1]
	(ii)	Draw one repeat unit of the polymer formed from C2.	
		Califi	
		100	[2]
		[Total: 1	4]

(c) Draw the structure of the cis isomer of C2.

6. Nov/2022/Paper_22/No.3(a, b)

Organic compounds can be distinguished using chemical tests and analytical techniques.

(a) Table 3.1 shows four pairs of organic compounds.

Table 3.1

organic compounds		reagent	positive result of chemical test on identified compound
A1 O H	A2 O		
B1	B2 O	wild	
C1 O	C2	allin	
D1 CH₃ OH	D2 OH		

- (i) Complete Table 3.1 to:
 - identify a reagent which can distinguish between the compounds in each pair
 - give the positive result of the chemical test and identify which compound shows this
 result

Use a different reagent for each test.

[8]

(ii) A1 and A2 are structural isomers.

Define structural isomers.

(iii)	Give the systematic name of B2 .	
		[1]
(iv)	Deduce the molecular formula of D1.	
		[1]
(b) D2	forms polymer Z when heated gently.	
(i)	Identify the type of polymer that forms from D2 .	
		[1]
(ii)	Draw one repeat unit of polymer Z.	
	Palpace	[2]

Table 3.2

bond	functional group containing the bond	characteristic infrared absorption range (in wavenumbers)/cm ⁻¹
C-O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C-H	alkane	2850–3100
N–H	amine, amide	3300–3500
O–H	carboxyl hydroxy	2500–3000 3200–3650

Both spectra show absorptions between 2850 and 2950 cm⁻¹ owing to C-H bonds in each molecule.

(i)	Use the two infrared spectra and Table 3.2 to identify the functional group present only in E .
	Explain your answer, referring only to absorptions at frequencies greater than 1500 cm ⁻¹ .
	functional group
	explanation
(ii)	Use the infrared spectrum of F to identify the functional group formed when E reacts with cold dilute acidified KMnO ₄ (aq).
	Explain your answer, referring only to absorptions at frequencies greater than 1500 cm ⁻¹ .
	explanation
	[1]
iii)	The mass spectrum of E shows a molecular ion peak and an M+2 peak of approximately equal abundance at $m/e = 120$ and 122.
	Deduce the relative molecular mass, $M_{\rm r}$, of E .
	$M_{\rm r} = \dots $ [1]