Carboxylic acids and derivatives – 2023 June AS Chemistry 9701

1. Nov/2023/Paper_ 9701/11/No.32

Propanoic acid can be made from bromoethane using a two-stage synthesis.

Which pair of reagents is most suitable?

	reagent for stage 1	reagent for stage 2
Α	hydrogen cyanide	aqueous sodium hydroxide
В	aqueous sodium hydroxide	excess acidified potassium dichromate(VI)
С	ethanolic sodium hydroxide	acidified potassium manganate(VII)
D	potassium cyanide	dilute hydrochloric acid

2. Nov/2023/Paper_ 9701/11/No.38

The structure of compound X is shown.

What is produced when X is heated with NaOH(aq)?

3. Nov/2023/Paper_ 9701/12/No.33

Propanoic acid can be used to make propene by a two-stage synthesis.

Which row shows suitable reagents for this synthesis?

	reagent for first stage	reagent for second stage
Α	LiA <i>l</i> H ₄	conc. H ₂ SO ₄
В	LiA <i>l</i> H ₄	NaOH in ethanol
С	NaBH ₄	conc. H ₂ SO ₄
D	NaBH ₄	NaOH in ethanol

4. Nov/2023/Paper_ 9701/12/No.37

bildoe Which alcohol reacts with alkaline $I_2(aq)$ to produce ethanoate ions?

- Α ethanol
- В methylpropan-2-ol
- propan-2-ol
- butan-2-ol

5. Nov/2023/Paper_ 9701/12/No.38

How many esters with the molecular formula $C_5H_{10}O_2$ can be made by reacting a primary alcohol with a carboxylic acid?

- **A** 4
- В 5
- С 6
- D 8

6. Nov/2023/Paper_ 9701/12/No.39

The diagram shows an ester. It is heated under reflux with an excess of NaOH(aq).

Which row shows the 2 products of the reaction?

	product 1	product 2	
A	ОН	ОН	
В	ОН	ONa	190°
С	ONa	ОН	alori
D	ONa	ONa	Call
	••	balb.	

7. Nov/2023/Paper_ 9701/22/No.4(a)

Lactic acid, $CH_3CH(OH)COOH$, and pyruvic acid, $CH_3COCOOH$, both contain two functional groups.

H₃C C C C O H

Fig. 4.1

- (i) Explain why lactic acid exists as optical isomers.

 [1]

 (ii) Give the systematic name of lactic acid.

 [1]
 - (iii) Lactic acid forms hydrogen bonds with water.

Complete Fig. 4.2 to show the formation of a hydrogen bond between one molecule of lactic acid and one molecule of water.

Label the hydrogen bond. Show any relevant dipoles and lone pairs of electrons.

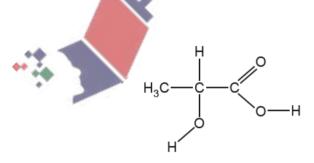


Fig. 4.2

[3]

8. June/2023/Paper_9701/11/No.36

Which method could produce butanoic acid?

- A an acid-base reaction involving CH₃CH₂CH₂CO₂Na
- **B** the hydrolysis of CH₃CH₂CH₂CH₂CN
- C the acidic hydrolysis of CH₃CH₂COOCH₂CH₂CH₃
- **D** the oxidation of CH₃CH₂CH₂OH

9. June/2023/Paper_9701/11/No.37

Which ester may be hydrolysed to produce two products, one of which may be reduced to the other?

- A CH₃CH₂CO₂CH₃
- B CH₃CH(CH₃)CO₂CH₂CH(CH₃)₂
- C CH₃CH₂CO₂CH(CH₃)₂
- D (CH₃)₂CHCO₂CH(CH₃)₂

10. June/2023/Paper_9701/11/No.38

Two compounds, X and Y, are mixed and a little concentrated H₂SO₄ is added.

Ester Z is found in the resulting mixture of products.

Which two compounds could be X and Y?

	Х	Y	
Α	CH ₃ CH ₂ OH	CH(CO ₂ H) ₃	
В	CH₃CH₂OH	CH3CO2CH2CH(OH)CH2OCOCH2CH3	
С	CH₃CO₂H	CH ₃ CH ₂ CO ₂ CH ₂ CH(OH)CH ₂ OH	
D	CH₃CO₂H	CH ₂ (OH)CH(OH)CH ₂ (OH)	

11. June/2023/Paper_9701/12/No.38

Which reaction will form propanoic acid?

- A acidic hydrolysis of propyl ethanoate
- B alkaline hydrolysis of ethyl propanoate
- C acidic hydrolysis of propanenitrile
- D acidic hydrolysis of ethanenitrile

12. June/2023/Paper 9701/13/No.1

Propanoic acid is treated with reagent X at room temperature. The organic product of the reaction is sodium propanoate. No gas is produced during the reaction.

What could be reagent X?

A NaHCO₃(aq)

B NaOH(aq)

C $Na_2CO_3(aq)$

Na₂SO₄(aq)

13. June/2023/Paper 9701/13/No.35

Methylbut-2-ene reacts with HBr at room temperature to produce compound X as a major product.

Compound X reacts with KCN in ethanol to produce compound Y.

Compound Y is hydrolysed with acid to produce compound Z.

What is compound Z?

- A 2,2-dimethylbutanoic acid
- B 2,3-dimethylbutanoic acid
- C 2-methylpentanoic acid
- D 3-methylpentanoic acid

14. June/2023/Paper_9701/13/No.36

Compound Q can be hydrolysed by HCl(aq). The two products of this hydrolysis have the same empirical formula.

What could Q be?

- A CH₃CO₂CH₂CH₂OH
- $\textbf{B} \quad \text{CH}_{3}\text{CO}_{2}\text{CH}_{2}\text{CH}_{2}\text{CO}_{2}\text{H}$
- C CH₃CH₂CO₂CH₂CH₂CH₃
- D CH₃CH₂CH(OH)CH(OH)CH₂CH₃

15. June/2023/Paper_9701/13/No.37

An unsaturated carboxylic acid reacts with alcohol X to form an ester.

The structure of the ester is shown.

Which geometrical isomer is shown in this ester and to which class of alcohol does X belong?

	geometrical isomer	class of alcohol X	
Α	cis	secondary	
В	cis	tertiary	O.
С	trans	secondary	100
D	trans	tertiary	.0
		apacannic	

16. June/2023/Paper_9701/21/No.4

V is a colourless liquid.

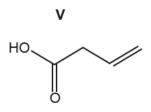
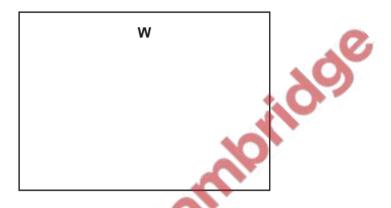



Fig. 4.1

- (a) ${\bf V}$ reacts with an excess of LiA ${\it l}{\bf H}_{\it 4}$ to form ${\bf W}$.
 - (i) Draw the structure of W in the box.

[1]

ii) Identify the role of $LiAlH_4$ in the reaction with **V**.

______[1]

(b) V reacts to form Z in a single reaction, as shown in Fig. 4.2.

Fig. 4.2

(i) Suggest the reagent and conditions needed to form ${\bf Z}$ from ${\bf V}$.

.....[1]

(ii) Deduce the empirical formula of Z.

.....[1

(iii) Complete Table 4.1 to show the number of sp² and sp³ hybridised carbon atoms that are present in a molecule of V.

Table 4.1

type of hybridisation	sp ²	sp ³
number of carbon atoms in V		

[2]

(c) Q contains the elements carbon, hydrogen and oxygen only. It is a saturated molecule with no branching in its carbon backbone.

Q contains only one functional group.

The relative molecular mass of Q is 88.

No effervescence is seen when Na_2CO_3 is added to $\bf Q$. Effervescence is seen when sodium is added to $\bf Q$.

 ${\bf Q}$ reacts with alkaline ${\bf I_2}({\bf aq})$ to form a yellow precipitate.

Draw the structure of Q in the box.

[2]

[Total: 8]

17. June/2023/Paper_9701/23/No.5

Y is formed from X in a single-step reaction, as shown in Fig. 5.1.

Fig. 5.1

(a)	Deduce the	empirical	formula	of Y.
-----	------------	-----------	---------	-------

F 4	4.7
17	4 1
 	4 1

- (b) The formation of Y from X requires the addition of a suitable reducing agent.
 - (i) Construct an equation using molecular formulae and [H] for the reaction in Fig. 5.1. Use [H] to represent one atom of hydrogen from the reducing agent.

(ii) Identify a suitable non-gaseous reducing agent for the formation of Y from X.

(c) Complete Table 5.1 to show the number of sp² and sp³ hybridised carbon atoms in a molecule of **X**.

Table 5.1

type of hybridisation	sp ²	sp ³
number of carbon atoms in X		

[2]

(d) Complete Table 5.2 with the expected observations that occur when the reagents shown are added to separate solutions of **X** and **Y**. Do **not** refer to temperature changes in your answer.

Table 5.2

reagent	observation on addition to X	observation on addition to Y
aqueous sodium carbonate		
2,4-dinitrophenylhydrazine (2,4-DNPH reagent)		
alkaline aqueous iodine		. 200

[3]

[Total: 8]

18. March/2023/Paper 9701/12/No.25

Which two formulae correctly represent a pair of structural isomers?

- A CH₃CH(CH₃)COOH and (CH₃)₂CHCOOH
- B CH₃CH(COOH)CH₃ and (CH₃)₂CHCOOH
- C CH₃CHCOOH and CH₃CH₂CH₂COOH
- D CH₃CH₂CH₂COOH and (CH₃)₂CHCOOH

19. March/2023/Paper_9701/12/No.32

Tartaric acid, HOOCCH(OH)CH(OH)COOH, is found in many plants.

A sample of tartaric acid reacts with an excess of LiA1H4 to form the organic product J.

What happens when NaOH(aq) is added to separate samples of tartaric acid and J?

- A Both tartaric acid and J react.
- **B** Only tartaric acid reacts.
- C Only J reacts.
- D Neither tartaric acid nor J react.

20. March/2023/Paper_9701/12/No.33

Citric acid can be converted into tricarballylic acid in two stages. An intermediate, Q, is formed.

Which reagents are needed for each stage?

	stage 1	stage 2		
Α	concentrated H ₂ SO ₄	H ₂ (g) and Ni		
В	concentrated H ₂ SO ₄	LiA <i>l</i> H ₄		
С	LiA <i>l</i> H₄	H ₂ SO ₄ (aq)	20	
D	NaOH(aq)	H ₂ (g) and Ni		
larch/2023/Paper_9701/12/No.36				

21. March/2023/Paper_9701/12/No.36

The ester ethyl butanoate can be hydrolysed using an excess of dilute sodium hydroxide solution.

Which substance is a product of this reaction?

- A CH₃CH₂CH₂CO₂Na
- B CH₃CO₂Na
- C CH₃CH₂ONa
- D H₂O

22. March/2023/Paper_9701/12/No.37

An aqueous solution contains 4.00 g of a carboxylic acid, Q. When this solution reacts with an excess of magnesium, 380 cm³ of gas is produced, measured at s.t.p.

What is the relative formula mass of Q?

- **A** 59
- **B** 118
- **C** 126
- **D** 236