Chemical bonding – 2023 AS Chemistry 9701

1. Nov/2023/Paper 9701/11/No.5

Solid aluminium chloride sublimes at 178 °C.

Which structure best represents the species in the vapour at this temperature?

D

В С Α Ċl

2. Nov/2023/Paper_ 9701/11/No.6

Nov/20	023/Paper_ 9701/11/	No C
	row is correct?	140.0
	shape of H ₃ O ⁺	shape of SC1 ₂
Α	pyramidal	non-linear
В	pyramidal	linear
С	trigonal planar	non-linear
D	trigonal planar	linear
		001
		80

3. Nov/2023/Paper 9701/12/No.5

Ammonium ions, $\mathrm{NH_4}^+$, are formed when ammonia gas reacts with hydrogen chloride gas.

Which statement about the changes that occur in this reaction is correct?

The dipole moment of an ammonium ion is greater than the dipole moment of an ammonia molecule.

1

- В The H-N-H bond angle decreases when an ammonium ion is formed.
- The hybridisation of nitrogen does not change. C
- There is electron transfer from nitrogen to chlorine.

4. Nov/2023/Paper_ 9701/12/No.7

Two compounds of boron are sodium borohydride, NaBH₄, and boron trifluoride, BF₃.

What are the shapes of the borohydride ion and the boron trifluoride molecule?

	borohydride ion	boron trifluoride				
Α	square planar pyramidal					
В	square planar	trigonal planar				
С	tetrahedral	pyramidal				
D	tetrahedral	trigonal planar				

5. Nov/2023/Paper_ 9701/21/No.1(c, d)

(c) A student does three tests on separate samples of NaCI(aq).

Complete Table 1.2 with the observations the student makes in each test.

Table 1.2

test	test	observations
1	addition of a few drops of Br ₂ (aq)	
2	addition of a few drops of concentrated ${\rm H_2SO_4}$	
3	addition of a few drops of dilute AgNO ₃ (aq)	

[3]

(d) POCl₃ shows similar chemical properties to PCl₅.

POCl₃ has a melting point of 1°C and a boiling point of 106°C.

 $POCl_3$ reacts vigorously with water, forming misty fumes and an acidic solution.

(i) Explain how the information in (d) suggests the structure and bonding of $POCl_3$ is simple covalent.

(ii) Construct an equation for the reaction of POC13 with water.

 $POCl_3$ +

(iii) POCl₃ contains a double covalent bond between P and O.

Complete the dot-and-cross diagram, in Fig. 1.1, to show the bonding in POCl₃.

Show outer shell electrons only.

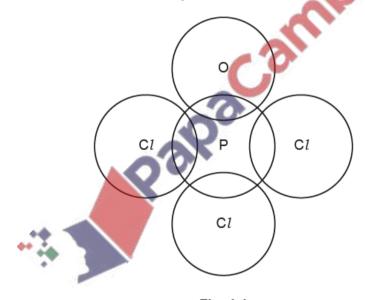


Fig. 1.1

[2]

6. June/2023/Paper_9701/11/No.7

Histidine is an amino acid.

histidine

What are the approximate bond angles 1, 2, and 3?

	1	2	3		
Α	109.5°	107°	90°		
В	120°	107°	109.5°		
С	120°	120°	90°		
D	120°	120°	109.5°		

7. June/2023/Paper_9701/12/No.6

moridae Which statement about the C1-N=O molecule is correct?

- Each molecule contains one σ and two π bonds.
- В It is a non-polar molecule.
- С It is a linear molecule.
- The nitrogen atom is sp² hybridised.

8. June/2023/Paper_9701/12/No

Which row is correct?

	molecule	shape	total number of pairs of electrons in the valence shell of the central atom				
Α	CO ₂	linear	two				
В	BF ₃	trigonal planar	three				
С	NH ₃	regular tetrahedral	four				
D	PF ₅	octahedral	six				

9. June/2023/Paper_9701/13/No.4

L and M are elements in Period 3 of the Periodic Table. Neither element is argon.

Information about the Pauling electronegativity values of L and M is given.

element	Pauling electronegativity value				
L	the highest of the seven elements Na to C $\it l$				
М	the lowest of the seven elements Na to C1				

Three statements about elements L and M are given.

- 1 Element L contains covalent bonds.
- 2 Element L has a higher atomic number than element M.
- 3 A compound of L and M contains ionic bonds.

Which statements are correct?

- **A** 1, 2 and 3
- **B** 1 and 2 only
- C 1 and 3 only
- D 2 and 3 only

10. June/2023/Paper_9701/13/No.5

Ammonia reacts with acids to form the ammonium ion.

$$NH_3 + H^{\dagger} \rightarrow NH_4$$

Which row is correct?

	shape of NH ₄ ⁺	bond angle in NH ₄ +/°
Α	pyramidal	107
В	p <mark>yr</mark> amidal	109.5
С	tetrahedral	107
D	tetrahedral	109.5

11. June/2023/Paper_9701/22/No.1

The melting points of some solids are shown in Table 1.1.

Table 1.1

solid	melting point/K				
magnesium	923				
phosphorus	317				
sodium chloride	1074				
sulfur	392				

(a)	(i)	State the type of bonding present in magnesium and in sodium chloride.	
		bonding in magnesium	
		bonding in sodium chloride	[1]
	(ii)	Explain the difference in the melting points of magnesium and sodium chloride.	
	(iii)	Explain the difference in the melting points of phosphorus and sulfur in terms of struand bonding.	ıcture
		NO.	
(b)	(i)	Define electronegativity.	
			[1]
	(ii)	Explain why electronegativity increases across a period.	
			[2]

(iii)	Name the strongest intermolecular force that exists between $\mathrm{NH_{3}}(\mathrm{I})$ molecules.
(iv)	Draw a diagram to show the formation of the strongest intermolecular force between two molecules of NH ₃ (I).
	Include any relevant lone pairs of electrons and dipoles.
(v)	[2] The melting points of ice and ammonia are shown in Table 1.2. Table 1.2 solid melting point/K
	ice 273 ammonia 195
	Suggest two reasons for the difference in the melting points of ice and ammonia.
	[2]
	[Total: 12]

(a)		e reaction of pure aluminium is only observed if the aluminium oxide layer is removed first en pure aluminium is added to cold water, bubbles of gas are seen.
	(i)	State one property of aluminium oxide that explains why an aluminium object does not react with cold water until the aluminium oxide layer is removed.
		[1]
	(ii)	Write an equation, with state symbols, for the reaction of aluminium oxide with an excess of NaOH(aq).
	(iii)	Name one other Period 3 element that also produces bubbles of gas when added to cold water.
		[1]
(b)		minium nitrate is a white soluble salt. On heating aluminium nitrate, thermal decomposition urs and a brown gas is seen.
		te the formula of the salt of another element in Period 3 which also decomposes or iting to produce a brown gas.
		[1]
(c)	Alu	minium chloride and phosphorus chloride are both white solids.
	(i)	State the maximum oxidation number of aluminium and of phosphorus in these solic chloride salts.
		maximum oxidation number of aluminium
		maximum oxidation number of phosphorus
		[1]
	(ii)	State why the maximum oxidation number of aluminium is different from that or phosphorus.
		[1]
	(iii)	Write an equation for the reaction of solid phosphorus chloride and excess water.

12. June/2023/Paper_9701/23/No.2

	(iv) N	Name the type of reaction that occurs when aluminium chloride is added to water.									
	(v)		xplain why the									[1] er has a pH
												[Total: 10]
13.			23/Paper_9701 species is ther		of electr	ons?						
	Α	CH₃	В	CH ₃ ⁺	С	CH ₃ ⁻		D	CH₄	, c)	>	
14.	In a	a sam	23/Paper_9701 nple of pure wa n be involved i	ter, what is the	e maxin	num numb	er of h	ydro	gen bo	nds that	one mol	ecule of
	Α	1	В	2	С	Co		D	4			
15.	Marc	ch/20	23/Paper_9701	/22/No.2(a)	0	0						
	The	e Gro	oup 2 elements	Mg to Ba are	e all silv	ery-white	reacti	ve m	netals.			
	(a)	(i)	Draw a labe room temper	lled diagram rature.	to show	w the bon	ding a	and s	structu	re of th	e Group	2 metals at
		(::\	Fundain aubur		h 1 -	-t-i1	م خدم داد	:4 41-	an Na			[2]
		(ii)	⊏xpiain wny	Mg has a higl	ner ele	cifical con	uuctiv	ity th	an Na	•		
			•••••	•••••					••••••			
								•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	[1]