# **Group 17 – 2023 AS Chemistry 9701**

#### 1. Nov/2023/Paper 9701/11/No.22

In this question, Q represents an atom of chlorine, bromine or iodine.

Which explanation for the variation in volatility down Group 17 is correct?

- A Instantaneous dipole–induced dipole forces between molecules become stronger.
- **B** Permanent dipole–permanent dipole forces between molecules become stronger.
- C The bond energy of the Q<sub>2</sub> molecules decreases.
- $\label{eq:decreases} \textbf{D} \quad \text{ The first ionisation energy } Q(g) \rightarrow Q^{^{+}}\!(g) + e^{^{-}} \, \text{decreases}.$

## 2. Nov/2023/Paper\_ 9701/11/No.23

Which statement about the halogens or halide ions is correct?

A Bromide ions react to form a white precipitate when added to silver nitrate solution.

bildoe

- B Bromine does **not** oxidise chloride ions when added to sodium chloride solution.
- C Fluorine atoms form cations by accepting electrons when they react.
- D Chloride ions are stronger reducing agents than iodide ions.



## 3. Nov/2023/Paper\_ 9701/12/No.24

lodine has a higher melting point than chlorine.

What is the reason for this?

- A lodine has stronger covalent bonds than chlorine.
- **B** lodine molecules have stronger permanent dipoles than chlorine molecules.
- C lodine is more volatile than chlorine.
- D lodine has stronger instantaneous dipole-induced dipole forces than chlorine.

## 4. Nov/2023/Paper\_ 9701/12/No.25

When concentrated sulfuric acid is added to solid sodium chloride, HC1 is formed but not C12.

When concentrated sulfuric acid is added to solid sodium iodide,  ${\rm I}_2$  is formed.

Which statement explains these observations?

- Sulfuric acid is an oxidising agent and chloride ions are more easily oxidised than iodide
- В Sulfuric acid is an oxidising agent and iodide ions are more easily oxidised than chloride ions.
- С Sulfuric acid is a reducing agent and chloride ions are more easily reduced than iodide ions.
- Sulfuric acid is a reducing agent and iodide ions are more easily reduced than chloride ions. D



**5.** Nov/2023/Paper\_ 9701/21/No.3(c)

(c) Fig. 3.1 shows a reaction scheme that involves H<sub>3</sub>PO<sub>4</sub> in several reactions.



Fig. 3.1

(i) Identify  $\bf A$ , which reacts with propene in the presence of  $\bf H_3PO_4$  in reaction 2.

.....[1]

(ii) Draw the structure of B.



(iii) Name the type of reaction that occurs in reaction 3.

.....[1]

| (iv) | Reaction 3 is monitored using infrared spectroscopy. It is not possible to use the O—H absorption frequency to monitor the reaction. |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
|      | Use Table 3.2 to identify a suitable bond whose absorption frequency can be used to monitor the progress of reaction 3. $$           |
|      | State the change you would see in the infrared spectrum during reaction 3.                                                           |
|      | bond                                                                                                                                 |
|      | change in infrared spectrum                                                                                                          |
|      |                                                                                                                                      |

[2]

Table 3.2

| bond | functional groups containing the bond | characteristic infrared absorption range (in wavenumbers)/cm <sup>-1</sup> |
|------|---------------------------------------|----------------------------------------------------------------------------|
| C-O  | hydroxy, ester                        | 1040–1300                                                                  |
| C=C  | aromatic compound, alkene             | 1500–1680                                                                  |
| C=O  | amide<br>carbonyl, carboxyl<br>ester  | 1640–1690<br>1670–1740<br>1710–1750                                        |
| C–H  | alkane                                | 2850–2950                                                                  |

# 6. June/2023/Paper\_9701/11/No.9

Bromine reacts with aqueous sodium hydroxide at 25 °C.

reaction 1 
$$Br_2(aq) + 2NaOH(aq) \rightarrow NaBr(aq) + NaOBr(aq) + H_2O(I)$$

The NaOBr formed is unstable at 25 °C and reacts further.

$$\text{reaction 2} \quad \text{3NaOBr(aq)} \, \rightarrow \, \text{2NaBr(aq)} \, + \, \text{NaBrO}_3(\text{aq})$$

Which reactions are disproportionations?

- A both reaction 1 and reaction 2
- B neither reaction 1 nor reaction 2
- C reaction 1 only
- D reaction 2 only

# 7. June/2023/Paper\_9701/11/No.14

Chlorine dioxide, ClO2, reacts with aqueous sodium hydroxide to produce water and a mixture of two sodium salts, NaClO2 and NaClO3.

What is the mole ratio of NaClO2 to NaClO3 in the product mixture?

1:2 Α

3:5 В

C 1:1

5:3

## 8. June/2023/Paper\_9701/11/No.17

The solids sodium chloride and sodium iodide both react with concentrated sulfuric acid at room temperature.

With NaCl, the products are NaHSO $_4$  and HCl.

With NaI, the products are NaHSO<sub>4</sub>, HI, I<sub>2</sub>, SO<sub>2</sub>, H<sub>2</sub>O, S and H<sub>2</sub>S. idde

What is the explanation for this difference in products?

- Α Chloride ions will displace iodine from the solution.
- В Hydrogen chloride is more volatile than hydrogen iodide.
- lodide ions are better reducing agents than chloride ions. С
- Sulfuric acid is able to act as a dehydrating agent with NaI. D

# 9. June/2023/Paper 9701/11/No.22

The boiling points of  $Br_2$ , ICl and IBr are given in the table.

|                  | Br <sub>2</sub> | IC1 | IBr |
|------------------|-----------------|-----|-----|
| boiling point/°C | 59              | 97  | 116 |

Which row explains:

- why the boiling point of IC1 is greater than Br<sub>2</sub>
- why the boiling point of IBr is greater than IC1?

|   | boiling point of IC <i>l</i> is greater than Br <sub>2</sub>  | boiling point of IBr is<br>greater than IC <i>1</i>   |
|---|---------------------------------------------------------------|-------------------------------------------------------|
| A | IC1 has stronger instantaneous dipole-induced dipoles         | IBr has stronger instantaneous dipole-induced dipoles |
| В | IC <i>l</i> has permanent dipoles                             | IBr has stronger instantaneous dipole-induced dipoles |
| С | IC <i>l</i> has stronger instantaneous dipole-induced dipoles | IBr has stronger permanent dipoles                    |
| D | IC1 has permanent dipoles                                     | IBr has stronger<br>permanent dipoles                 |

# **10.** June/2023/Paper\_9701/12/No.22

J dissolves in water to give an aqueous solution K.

K gives a dense white precipitate when aqueous silver nitrate is added.

When heated with aqueous potassium hydroxide, K gives off a gas that turns moist universal indicator paper blue.

What is J?

- A ammonium chloride
- B ammonium sulfate
- C sodium chloride
- D sodium hydroxide

#### 11. June/2023/Paper 9701/13/No.17

Which row shows the expected properties of the element astatine when compared to the properties of the element iodine?

|   | electronegativity<br>of astatine compared<br>to iodine | volatility<br>of astatine compared<br>to iodine |
|---|--------------------------------------------------------|-------------------------------------------------|
| Α | less electronegative                                   | higher                                          |
| В | more electronegative                                   | higher                                          |
| С | less electronegative                                   | lower                                           |
| D | more electronegative                                   | lower                                           |

# 12. June/2023/Paper 9701/13/No.24

Which statement about the halogens is correct?

- A lodine cannot behave as an oxidising agent.
- **B** The volatility of the elements increases from chlorine to iodine because of the increase in molecular size down the group.
- C When an equimolar mixture of chlorine and hydrogen is exploded, only one product is formed.
- When concentrated sulfuric acid is added to solid sodium bromide, hydrogen sulfide is one of the products.

## 13. June/2023/Paper\_9701/13/No.25

When concentrated sulfuric acid is added to solid sodium bromide, bromine gas is produced, along with a number of other products. However, when concentrated sulfuric acid is added to solid sodium chloride, only hydrogen chloride and sodium hydrogensulfate are produced.

What is the reason for this difference?

- A Bromine is less volatile than chlorine.
- B Hydrochloric acid is a weak acid.
- C Sulfuric acid is **not** an oxidising agent.
- **D** The bromide ion is a stronger reducing agent than the chloride ion.



| (a) | Chlorine reacts with silicon to form silicon( $\mathrm{IV}$ ) chloride. Describe the appearance of silicon( $\mathrm{IV}$ ) chloride at room temperature and pressure. State its structure and bonding. |           |                                                                           |                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------|--------------------------------------|
|     | appearance                                                                                                                                                                                              |           |                                                                           |                                      |
|     | structure and bo                                                                                                                                                                                        | nding     |                                                                           | [2                                   |
| (b) | Samples of magnof cold water.                                                                                                                                                                           | nesium cl | hloride and phosphorus( $\mathrm{V}$ ) ch                                 | loride are added to separate beakers |
|     | Complete Table reactions.                                                                                                                                                                               | 3.1. Igno | re temperature changes where                                              | n considering observations for these |
|     |                                                                                                                                                                                                         |           | Table 3.1                                                                 | 200                                  |
|     |                                                                                                                                                                                                         |           | magnesium chloride                                                        | phosphorus(V) chloride               |
|     | appearance at root<br>temperature                                                                                                                                                                       | om        | 20                                                                        |                                      |
| 1   | e similarity in obse<br>n addition to cold v                                                                                                                                                            | I         | an                                                                        |                                      |
|     | difference in obse                                                                                                                                                                                      |           | Co                                                                        |                                      |
|     | pH of final solution                                                                                                                                                                                    | on        | 000                                                                       |                                      |
|     |                                                                                                                                                                                                         | 10        | 0                                                                         | [4                                   |
| (c) | (i) State the re $Cl_2(g)$ .                                                                                                                                                                            | agent an  | d conditions required for the f                                           | ormation of sodium chlorate(V) fron  |
|     | <b></b>                                                                                                                                                                                                 |           |                                                                           | [1                                   |
|     |                                                                                                                                                                                                         |           | tion in <b>(c)(i)</b> is described as a defer to relevant species and the |                                      |
|     |                                                                                                                                                                                                         |           |                                                                           |                                      |
|     |                                                                                                                                                                                                         |           |                                                                           | [1                                   |
|     |                                                                                                                                                                                                         |           |                                                                           |                                      |

**14.** June/2023/Paper\_9701/21/No.3(a \_ c) Chlorine is a very reactive element.

**15.** June/2023/Paper\_9701/22/No.2 Chlorine is a reactive element. It forms many compounds.

(a) (i) Complete Table 2.1 to show the maximum oxidation number of the elements Na to P in their chlorides.

Table 2.1

| element                  | Na | Mg | Al | Si | Р |
|--------------------------|----|----|----|----|---|
| maximum oxidation number |    |    |    |    |   |

[1]

|     | (ii) | State what determines the maximum oxidation number of elements in Period 3.                        |
|-----|------|----------------------------------------------------------------------------------------------------|
|     |      | [1]                                                                                                |
| (b) | An e | excess of cold water is added to the chloride of silicon.                                          |
|     | (i)  | Write an equation for the reaction between an excess of cold water and the chloride of silicon.    |
|     |      | [1]                                                                                                |
|     | (ii) | Suggest the pH of the solution produced in (b)(i).                                                 |
|     |      | [1]                                                                                                |
| (c) | An e | excess of cold water is added to the chloride of phosphorus.                                       |
|     | (i)  | Write an equation for the reaction between an excess of cold water and the chloride of phosphorus. |
|     |      | [1]                                                                                                |
|     | (ii) | Suggest the pH of the solution produced in (c)(i).                                                 |
|     |      | [1]                                                                                                |
| (d) | (i)  | Write an equation for the reaction of chlorine with water.                                         |
|     |      | [1]                                                                                                |
|     | (ii) | Write an equation for the reaction of chlorine with hot NaOH(aq).                                  |
|     |      | [1]                                                                                                |

| e) |       | Bleach is used as a cleaning product to kill bacteria. It is made by adding compounds like sodium chlorate(I), NaC $\it l$ O, to water.                                                                                                                                                                                                                                                                                      |  |  |
|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | (i)   | Identify the formula of the ion present in bleach that kills bacteria.                                                                                                                                                                                                                                                                                                                                                       |  |  |
|    |       | [1]                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|    | (ii)  | Sodium chlorate(I), NaC $l$ O, reacts with hydrogen peroxide to produce sodium chloride, water and oxygen gas.                                                                                                                                                                                                                                                                                                               |  |  |
|    |       | Construct an equation for this reaction.                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|    |       | [1]                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|    | (iii) | A sample of bleach ${\bf W}$ contains an unknown concentration of sodium chlorate(I).                                                                                                                                                                                                                                                                                                                                        |  |  |
|    |       | $10.0\mathrm{cm^3}$ of <b>W</b> is diluted with distilled water to make a total volume of $100\mathrm{cm^3}$ of bleach solution. $25.0\mathrm{cm^3}$ of this diluted bleach solution is added to an excess of hydrogen peroxide and the volume of gas produced measured under room conditions. The experiment is repeated and on average $25.0\mathrm{cm^3}$ of diluted bleach solution produces $42.0\mathrm{cm^3}$ of gas. |  |  |
|    |       | Calculate the concentration, in $gdm^{-3}$ , of sodium chlorate(I) in $\boldsymbol{W}$ .                                                                                                                                                                                                                                                                                                                                     |  |  |
|    |       |                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |



concentration of NaClO in  $\mathbf{W} = \dots gdm^{-3}$  [3]

[Total: 13]

# **16.** March/2023/Paper\_9701/12/No.18

Powder P is a mixture containing two of AgC1, AgBr or AgI.

P is shaken with dilute aqueous ammonia. A yellow solid, Q, remains.

The mixture is filtered and Q is washed and dried. The filtrate is collected and treated with aqueous nitric acid to produce a white precipitate, R, which is filtered off, washed and dried.

Q and R are warmed separately with concentrated sulfuric acid,  $H_2SO_4$ .

Which observations are made?

|   | Q + concentrated H <sub>2</sub> SO <sub>4</sub> | R + concentrated H <sub>2</sub> SO <sub>4</sub> |     |
|---|-------------------------------------------------|-------------------------------------------------|-----|
| Α | violet fumes                                    | orange fumes                                    |     |
| В | violet fumes                                    | steamy fumes                                    | 0   |
| С | steamy fumes                                    | violet fumes                                    | . 0 |
| D | orange fumes                                    | steamy fumes                                    | 70  |
|   | P                                               | a Canno                                         |     |