Halogen compounds - 2023 AS Chemistry 9701

- **1.** Nov/2023/Paper_ 9701/21/No.4(c, d)
 - (c) C and D both react with HBr.
 - (i) C reacts with HBr to form E.

Complete the diagram in Fig. 4.2 to show the mechanism for this reaction.

Draw the structure of the organic intermediate.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

Fig. 4.2

[3]

(ii) D reacts with HBr to produce F, a chiral bromoalkane.

Draw the structure of F.

[1]

(iii) Explain why the reaction of HBr with C and D produces different major products.

(d) C can be used to form H.

Fig. 4.4

One possible synthesis of **H** is shown in Fig. 4.5. Different portions of **C** are used in reactions 1 and 3. Some of the products are then combined to produce **H**.

Fig. 4.5 does not show any of the inorganic products of the reactions.

Complete Table 4.1 with the reagents and conditions required for each of the reactions shown in Fig. 4.5.

Table 4.1

		reagent and conditions
reaction 1	$\mathtt{c} o \mathtt{e}$	HBr(g)
reaction 2	E o J	
reaction 3	$c o g + \bigcirc$	
reaction 4	$ extsf{J} + extsf{G} ightarrow extsf{H}$	700

[3]

2. June/2023/Paper_9701/11/No.29

Which row describes the solvent used and type of reaction occurring when bromoethane reacts with NaOH to form ethene?

	solvent	type of reaction
Α	ethanol	elimination
В	ethanol	substitution
С	water	elimination
D	water	substitution

3. June/2023/Paper_9701/11/No.31

Which statement describes what happens when 2-chloro-2-methylpropane is warmed with NaOH(aq)?

- A This secondary halogenoalkane reacts by a mixture of an S_N1 and an S_N2 mechanism.
- **B** This secondary halogenoalkane reacts only by an S_N2 mechanism.
- **C** This tertiary halogenoalkane reacts mostly by an S_N1 mechanism.
- **D** This tertiary halogenoalkane does **not** react with hydroxide ions under these conditions.

4. June/2023/Paper 9701/12/No.29

When bromoethane reacts with hot ethanolic sodium hydroxide a colourless gas is formed. This gas decolourises aqueous bromine.

What is the colourless gas?

- 1.2-dibromoethane
- В ethanol
- C ethene
- D hydrogen bromide

5. June/2023/Paper 9701/12/No.30

Alkynes are hydrocarbons that contain one triple C≡C bond.

Like alkenes, alkynes take part in addition reactions. A saturated compound can be formed.

For example, ethyne, H–C≡C–H, reacts with an excess of hydrogen to form ethane.

Propyne, C₃H₄, undergoes an addition reaction with an excess of hydrogen bromide in two stages. Markovnikov's rule applies to the addition of HBr at each stage.

Alpacal What is the main product obtained when propyne reacts with an excess of hydrogen bromide?

- A CH₂BrCH₂CH₂Br
- B CH₃CH₂CHBr₂
- CH₃CHBrCH₂Br
- CH₃CBr₂CH₃

6. June/2023/Paper 9701/12/No.31

Bromine reacts with alkenes by an electrophilic addition mechanism in which a cation is formed as an intermediate.

Which mixture will produce the most stable intermediate cation?

- Α 3,3-dimethylpent-1-ene + bromine
- В ethene + bromine
- С methylpropene + bromine
- D propene + bromine

	Halogenoalkanes react with hot ethanolic potassium cyanide.							
	The reaction mechanism is either $S_N 1$ or $S_N 2$.							
	Whi	ich statement is cor	rect?					
	Α	All secondary halogenoalkanes react by the S _N 2 mechanism only.						
	В	Both the halogen mechanism.	oalkane	e and the cyar	nide ion	are involve	d in	the initial step of the $S_N 1$
	С	Chloroethane read	cts with	cyanide ions b	y the S _N 1	mechanisn	n only	y.
	D	The S _N 2 mechanis	sm invol	lves a short-live	ed negati	vely charge	d trar	nsition state.
8.	Stri 2-b	/2023/Paper_9701/ uctural isomerism romopentane is ho w many different h	and ste	ereoisomerism	of ethan		1	when answering this question
9.		1 /2023/Paper_9701/ ich type of reaction	happe		C 3	of 2-bromo	D	4 ane?
	В	free radical substi	100	A				
	С	nucleophilic additi						
	D	nucleophilic subst						
		Tradicoprinio-3ab3	The state of the s					

7. June/2023/Paper_9701/12/No.32

Chlorin	e is a very reactive element	t.				
(d) Chlorine reacts with methane in a series of reactions to produce chloroalkanes.						
	(i) State the conditions required for chlorine to react with methane.					
		[1]				
	(ii) One of the products of	the reaction is $\mathrm{CH_2C}l_2$ which reacts further to produce $\mathrm{CHC}l_3$.				
	Complete Table 3.2 to	show details of the mechanism that forms $\mathrm{CHC} l_3$ from $\mathrm{CH_2C} l_2.$				
		Table 3.2				
	name of step	equation				
	initiation					
	propagation	$CH_2Cl_2 + Cl \rightarrow$				
	termination	\rightarrow CHC l_3				
(e)	(e) $\mathrm{CHC}l_3$ and HF are used to form $\mathrm{CHC}l\mathrm{F}_2$ in a substitution reaction. Construct an equation for this reaction.					
(f)	X is a product of the substi	tution reaction that occurs when CHC1F ₂ reacts with Br ₂ .				
	There is only one naturally occurring isotope of fluorine, ¹⁹ F.					
	The mass spectrum of X sh	nows molecular ion peaks at $m/e = 164$, 166 and 168.				
	Complete Table 3.3 to show all the molecular ions responsible for each peak.					
	Table 3.3					
	m/e	formulae of molecular ions				
	164					
	166					
	168	(CF ₂ ³⁷ C <i>l</i> ⁸¹ Br) ⁺				
L		[2]				

10. June/2023/Paper_9701/21/No.3(d _ f)

11. June/2023/Paper_9701/22/No.3

Fig. 3.1 describes a sequence of reactions that can be used to produce a food additive, compound ${\bf Y}$, from ${\rm CH_3CH_2C}\it{l}$.

Fig. 3.1

(a)	(i)	State the reagent and conditions for step 1 in Fig. 3.1.	
			[1]
	(ii)	Give the systematic name of X.	
			[1]
	(iii)	Identify the type of reaction that occurs when dilute acid is added to X in step 2.	
			[1]
	(iv)	In step 3, Y and a gas are produced. Construct an equation for step 3.	ro1
			[2]
(b)		$_3\mathrm{CH_2COOH}$ can also be formed from propan-1-ol and potassium dichromate(VI). te the conditions required.	
			[1]

(c) Complete Table 3.1 to show the number of sigma bonds (σ) and pi bonds (π) present in a molecule of X.

Table 3.1

type of bond	number of bonds in X
sigma (σ)	
pi (π)	

[2]

[Total: 8]

12. March/2023/Paper_9701/12/No.27

Compound X, C₇H₁₃Br, reacts with hot alcoholic NaOH to produce two compounds, Y and Z.

On reaction with Br₂, Y gives a product, C₇H₁₂Br₂, which exists as a mixture of four optical isomers.

On reaction with Br₂, Z gives a product, C₇H₁₂Br₂, which is non-chiral.

What could X be?

13. March/2023/Paper_9701/12/No.31

Which compound reacts most rapidly with aqueous silver nitrate by an S_N1 mechanism?

- 1-chloromethylpropane Α
- В 2-chloromethylpropane
- С 1-iodomethylpropane
- D 2-iodomethylpropane

Fig. 4.1 shows some reactions of compound **D**, 2-bromobutane.

(iii) E also forms when F is heated strongly in the presence of an ${\rm A}l_2{\rm O}_3$ catalyst. Write an equation for this reaction.

(b)	(i)	Predict what is observed in reaction 2.	[1]
	(ii)	Identify the yellow precipitate and the organic ion formed in reaction 3. yellow precipitate	
		organic ion	 [2]
(c)	(i)	State the type of reaction that occurs in reaction 4.	[1]
	(ii)	Reaction 5 is similar to the reaction of ${\rm LiA}{\it l}{\rm H}_{\it 4}$ with carboxylic acids to form alcohols.	ניו
		Suggest the role of LiA1H4 in reaction 5.	[1]
		Palpacamini	