UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

www.papacambridge.com MARK SCHEME for the November 2004 question paper

9691 COMPUTING

9691/03 Written Paper, maximum mark 90

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

Grade thresholds taken for Syllabus 9691 (Computing) in the November 20 examination.

e threshold	s tak	en for Syllab	us 9691 (Co	mputing) in tl	he November	20 anbrid
		maximum	minimum	mark required	for grade:	Sec.
		mark available	A	В	E	911
Componer	nt 3	90	60	54	30	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

November 2004

Advanced Level

MARK SCHEME

MAXIMUM MARK: 90

SYLLABUS/COMPONENT: 9691/03

Computing Written Paper 3

			32
Ρ	age 1	Mark Scheme	Syllabus
		GCE A LEVEL- NOVEMBER 2004	9691
1	Reply		Camb
	allows us automatio	er to compose a response which is cally sent to original correspondent by rememberi	ng address
	Filing		SH
	storina th	e message for future use in	

1 Reply

Filing

storing the message for future use in A selection of user designed files

Copying/forwarding

Making a copy of the message and Forwarding it to another person by using their address

Multiple forwarding

Sending copy of message to many recipients by Using address book

(Automatic) Deletion

Remove mail from message box after it has been sent to Free up space

Blocking

If message is unsolicited and no further messages wanted from that source Then provider will block future messages from that address

2.

4 marks for entities 6 marks for relationships 4 for relationship descriptions

> (1 per point, max 10) (10)

	Mark Scheme	Syllabus	
	GCE A LEVEL- NOVEMBER 2004	9691	Day 1
. (i)	As jobs and files are loaded into memory they occ which when vacated leaves gaps in memory If a larger file is sent to that area and others It has to be broken up to fit This splitting of available memory into discontiguo	upy space	entation
	((1 per point, max 3)	(3)
(ii)	Memory is divided into regular sized areas called pages Jobs or files are allocated a number of pages accor Pages may be discontinuous Index of pages/files kept Addresses can be calculated by adding page addre	ding to size of job ess to raw address	
	(1 per point, max 3)	(3)
(iii)	Memory is divided into variable length blocks called segments Jobs or files can consist of many segments, different into memory Segments normally match natural divide in jobs Index of segments stored which must Store base address and length of segment	ent number each time tał	ken
	((1 per point, max 3)	(3)
(iv)	A whole job does not need to be resident in memory When a new page is required it is loaded into memory from a reserved area of the hard drive User believes whole job in memory simultaneously Erased page may need to be saved first if it has be Use of cache memory Problem of threshing	ory at the same time nory over a redundant pa een altered	age
	(1 per point, max 3)	(3)
. Prog The	gram is in modular form in machine code individual modules must be loaded by the loader into der decides where modules are to be placed nory addresses adjusted by loader) the computer's memory	
Loa Mer Use Link Calo Allo	of loader to load library routines er links the modules correctly culates addresses of the separate modules ws library routines to be linked to several programs		

				May .	
Page 3		Mark Sch	eme Sy	llabus A	
		GCE A LEVEL- NO	/EMBER 2004	9691	2
5. (a)	Copy the M Incre Copy Into	y the address in the PC int MAR ement the PC y instruction at address hel the MDR y contents of MDR into CIF	o d in MAR R		amb
	By a	Itering the PC			
	to the Rese Mark	e value in the address part et by returning to first step < for mention of check for i	of instruction nterrupt		
			(1 per point	, max 9)	(9)
(b)	(i)	Many processors working	g together (on the same run of a	a program)	(1)
	(ii)	(ii) ADV speeds up processes because more than one calculation can be			
		at a time DIS Programs must be s	pecially written		(2)
6. (a)	(i) (ii)	01101101 155	(1 for binary, 1 for 8 bits) (1 for 1, 1 for 55)		
	(iii)	6D	(1 for 6, 1 for D)		(6)
(b)	(i)	01111111/01111111 =	127/128x2^127		
()	()	0100000/1000000 =	1/2x2^-128 (2^-129)		
		1000000/01111111 =	-1x2^127		(0)
		1011111/1000000 =	-03/128821-128		(8)
(c)	Incre by re The The	ease the number of bits us educing the number of bits range of numbers is reduc size of the index of the por	ed for the mantissa for the exponent ed because wer of two is reduced		
			(1 per point	, max 3)	(3)
7. (a)	(i)	A variable which is define /can only be used in bloc	ed for a particular use in only or k in which it is defined	ne part of a prog	Iram
	(ii)	Can be used and have it	s value manipulated throughout	a program	
	(iii)	Information about a data when it is called (and ret	item being supplied to a functio urn data to calling routine)	on or procedure	(3)

Page 4	Mark Scheme	Syllabus	2
	GCE A LEVEL- NOVEMBER 2004	9691	Dar
(b)	A parameter passed by value		"an,
	a local copy of the data is stored		0
	in a separate location from the original		
	new value is discarded and return to original wher	n procedure is terminate	d
	A parameter passed by reference		
	parameter is stored in original location		
	a pointer is passed indicating where parameter is	stored	
	any changes will remove old value of parameter		
	new value available to calling program		
		1 per point, max 5)	(5)
(c)	Empty stack		
	100 entered as return address		
	6 as parameter		
	6 read by procedure		
	SP decremented		
	300,2,3 added to stack		
	SP above 3		
	3 and 2 read,		
	SP decremented twice	300	
	SP decremented	300	
	End of first procedure, return address 100 read		
	SP decremented		
	Accept any consistent use of SP		
	Diagrams showing the above are acceptable		
	(1 per point, max 6)	(6)
(a)	Data collected about present conditions to include		
	wind speed/humidity/temperature/pressure		
	Also details about conditions close to required loc	ation	
	Predictions made (forecast) and Prediction matched against actual results to		
	Hone predictions next time		
	Data collected by weather balloons/satellites/weat	her stations	
		1 per point, max 5)	(5)
(b)	Vast quantities of data		
. ,	Large number of calculations		
	To be carried out in a very short time		
	Application is time sensitive		
	Parallel processing can increase processing spee	ds massively	

