

www.papacambridge.com MARK SCHEME for the May/June 2007 guestion paper

9691 COMPUTING

9691/03

Paper 3 (Written Paper 3), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

(b) - Accuracy

- Less chance of error/less chance of missing something

- Up to date

- can be kept permanently up to date

- VANS

- arranges for transfer of data from one place to where it is needed

- Data mining

- the ability to trawl large quantities of data to find relevant information

- Security

suitable expansion

(1 per -, max 3 pairs, max 6)

[6]

												m	4	
Pa	age	5				Mark S	cheme				Syllab	us	·A.	er
				G	CE A/AS		. – May/、	June 20	07		9691		No.	2
(a)) (i) (ii)	-	- Th pa - Th be	e value to ssed e address altered if r	be search of the vanecessary	hed for i alue is p y).	is passed bassed/T	d/in this he locat	case the	e actu he nai	al name me is p	e "SN asse	IITH d (allov	wing it
(b)) (i)	-	- Th - Th va	e value of e counter riable).	the varial used to	ble only control	exists in the loop	the pro (so tha	cedure at it doe	es not	effect	a rep	beat us	se of the
	(ii)		- the - the pre	e value of t e variable ocedure).	he variab used to	ble exists hold th	s through ne details	out the s searc	code of hed for	the pi (need	rogram ds to b	e us	ed out	tside the
			(N	ote: Other	examples	s are fin	e with re	asonabl	e explar	nation	. 1 per ·	-, ma:	x 4)	[4
(c)) - lr - U - ((- R (^	nte Jse Co Rui 1 p	erpr ed c omp ns f oer	eter transla luring writir iler translat aster once -, max 4)	ites one o ng becaus es whole it has be	comman se it aids prograi en calle	nd at a tir s debugg m) into o d/may be	ne and ı jing bject co e held as	runs it be de (befo s a librar	efore ⁻ ore rur ry rout	the nex nning) tine.	t is tr	anslate	ed. [4
(d)) - C - L - A (^)eo .oa .dj 1 p	cide ads justs per	s where to program ar s memory a , max 2)	place pro nd proced addresses	ograms dures int s to mat	and proc to memo ch locati	edures ry ons use	d					[2
(a)) - Ir - S - U (´	nst Sin Jse 1 p	truc igle es s oer	tions and d processor erial proce ·, max 2)	ata store used ssing of i	ed togeth	ner in sar ons	ne merr	nory					[2
(b)) (i)		- ma - sir - all - Sp (1	any proces nultaneous doing som ecial non-l per -, max	sors are i ly e proces inear pro 2)	used… sing req grams n	luired by nust be p	the app produced	lication d					[2
	(ii)		- A - La (1	suitable exa rge amoun for applica	ample e.g t of proce tion, 1 for	gWeat essing re r reason	ther fored equired,	casting. the resu	lts of wh	nich ai	re time	sensi	tive	[2

10

Mark Points:

- Recognisable syntax diagram showing sequence
- Single letter possible
- Two letters, without more, possible
- Single digit possible
- Loop for multiple digits...
- inside \$ loop
- Dollar loop correctly positioned to miss Digits and &
- & after digits loop
- (1 per -, max 6)

[6]

			V .	
Page 7	Mark Scheme	Syllabus	· Q	er
	GCE A/AS LEVEL – May/June 2007	9691	Do	

- anbridge.com **11 (a)** External level gives the different views of the data seen by each of the users. Conceptual level is an integration of all the user views of the data/abstract represent the whole database/relationship between tables Internal level is the structure used for storage of the data/the logical arrangements o data for storage.
 - (b) (i) Used to define the data tables
 - Specifies data types/structures
 - Specifies constraints on the data
 - (ii) Allows the user to:
 - Insert
 - Update
 - Delete
 - Modify/edit
 - Retrieve data
 - (1 per -, max 2 per dotty, max 4)

[4]

- **12** All staff will need training relevant to their work
 - Many staff will find the new systems difficult to learn
 - Type of training important:
 - Course type with trainer
 - restricts learning times/can be intimidating/difficult to satisfy all demands/gives human contact for help
 - Electronic/Software based
 - Training on system at time user is free/individual training takes away intimidation/allows for practice/repetition/may not have access to equipment/has to be done in own time
 - Age problem of trainees/young have preconceptions, old have worries of ability
 - Customers have problem with new systems/must learn new procedures
 - Change of enquiries/ordering procedures to on-line

- Necessary regular upgrades of software and hardware cause repeats of problems as training needs to be repeated.

- Computer based system implies training should be on computer
- Reluctance on the part of staff to learn/use new methods
 - (1 per -, max 7)

[7]