WWW. Papa

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9691 COMPUTING

9691/31

Paper 3 (Written Paper), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			2
	Page 2	Mark Scheme: Teachers' version	Syllabus
		GCE A LEVEL – May/June 2011	9691
1	e.gData bus -to carry data	s from one location to another in processor // e.g. from	MDR to CIR
	-Address bus -carries the a	ddress of a memory location // e.g. Address of locatio	n in memory from MAR
	-Control hus		

e.g.-Data bus

- -to carry data from one location to another in processor // e.g. from MDR to CIR
- -Address bus
- -carries the address of a memory location // e.g. Address of location in memory from MAR
- -Control bus
- -Carries control signals around processor // to synchronise the operation of the processor components // by example: memory read/write completed // each line carries a different signal. Accept: system bus, memory bus, firewire, USB, PCI + explanation (2nd mark is dependent on correct bus name) (2 per -, max 6) [6]
- 2 (a) -One to one
 - -Mnemonics are used to represent operation codes
 - -Labels are used to represent memory addresses
 - -machine code is binary codes (only)
 - -assembly code can not be executed // machine code can be executed
 - -machine code and assembly language are both low level languages (machine specific) (1 per -, max 2)

[2]

[2]

- (b) -Labels added to a symbol table
 - -Labels are later looked up to determine the actual address / Assembler must allocate addresses to labels
 - -Mnemonic looked up in opcode table to find operation code
 - -Macro instructions used to stand for groups of instructions (1 per -, max 2)

(c) (i) -Address in instruction is the address of the address of / pointer to the location... -which contains the data to be used [2]

- (ii) -Address in the instruction has added to it -the contents of the Index Register/IR [2]
- (iii) -Address in the Instruction is the displacement
 - -from the address of the first/current instruction
 - -the value is added to the PC [2]

									The same	
	Page :	3		k Scheme:				Syllabus	.0	er
			GC	E A LEVEL	– May/Ju	ne 2011		9691	12	20
-		al cable escription	e on/one transr	nission med	lium (copp	er) surroun	ded by in	sulation		a Cambridg
-	Twiste- de-	•	on/two condu	cting wires	twisted ar	ound each o	other			
	-de	fibres c escription	contained on/fine glass nce free	strands car	ry light sig	nals // optic	fibre is v	ery fragile		
_		adio sig	nmunication gnals n to intercepti	on / latency	/ uses WI	∃P keys for	security			
_	transfe		ricted by line of statement	of sight						
((1 per -	-, max 8	3)							[8]
(systen ocess	n in which th	e output is	produced	quickly en	ough to a	affect the r	next inpu	ıt /current
			that reacts f	ast enough	to influend	e behaviou	r in the o	utside worl	d	[1]
(-Te -U: -Pi -(p -If -De	empera se anal rocesso rocesso necess elay bo	er of <u>sensors</u> ature/humidity logue to digital for decides whor) compares fary <u>actuator</u> efore next rare sampled	y sensor ser al converter nether air co s measured is used to a eading is	nds tempe to conver anditioning temperatu djust settil taken fror	rature/humion t the temper system is in tre/humidity ngs/turn on m temperat	rature/hu n operatio to requir cooling/h	midity mea: on ed tempera eating/hum	ature/hun nidifier	nidity
		ensors per -, n	on windows t	to warn if th	ey are ope	n during op	eration.			[4]
(-To	o play a -So tl	ble real-time a racing game nat the player	e r can steer t			.g.			
	-ar	•	rvation type s event double	•						[2]

			V .
Page 4	Mark Scheme: Teachers' version	Syllabus	er
	GCE A LEVEL – May/June 2011	9691	100

5	(a)	-se -wh	emporarily storing data for output later veral computers can send data to be printed at the same time nen queuing jobs sent to a single device per -, max 2)	bridge
	(b)	(i)	-Jobs can be queued to ensure that none are missed -Stops jobs being frozen/lost when printer unavailable -complete documents are printed	
		(ii)	-print jobs are stored on secondary storage -jobs can be given a print priority -jobs are maintained by a queue / priority queue data structure -data structure consists of reference data to each print job -When printer free, job with highest priority / at head of queue is printed -print files are sent from secondary storage to print buffer. (1 per -, max 4 per dotty, max 5)	[5]
6		(i)	-language to describe/alter table designs (NOT file) -includes Identifiers/data type/relationships -any validation rules that the data must adhere to (1 per -, max 2)	[2]
		(ii)	-designed to allow a user to query/retrieve data/sort the database -insert / delete / update -data in the database / table(s) (1 per -, max 3)	[3]
7		(i)	-106	[1]
		(ii)	–22	[1]

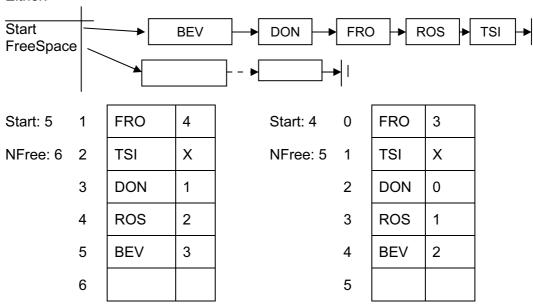
(iii) 96 (1 per digit)

[2]

Page 5	Mark Scheme: Teachers' version	Syllabus	· A er
	GCE A LEVEL – May/June 2011	9691	100

- 8 (a) (i) -A dynamic data structure changes size // A static data structure has the same
 - -dynamic data structure matches size to data requirements // static data structure no account of data requirements
 - -dynamic data structure takes memory from heap as required
 - -static data structure is predefined at compile time

(ii) Advantage:


- -Array is of fixed size which simplifies algorithms // or by example e.g. retrieval of data
- -Array controls the maximum size of the queue

Disadvantage:

- -Queue held in an array cannot expand beyond the size of the array
- -If queue is small then memory space is wasted.

[2]

(b) (i) Either:

Mark as follows ...

- -Start pointer + some value/arrows
- -All values included
- -Null pointer
- -Indication of free space

Diagram in arrival order

- -in arrival order
- -with correct pointers

OR

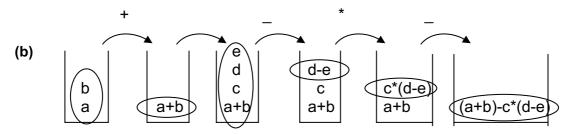
Diagram in alphabetical order

-with correct pointers

OR

Array diagram

- -in arrival order
- -correct pointers


(1 per -, max 5)

[5]

Page 6	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – May/June 2011	9691
-Sto -Set -Re -unt -Poi	ut NewItem The NewItem in next free space The Current to value at Start The Start of the Start of the Start The Start The Start of the Start The Start	Cambridge.com

- (ii) -Input NewItem
 - -Store NewItem in next free space
 - -Set Current to value at Start
 - -Read values in list following pointers.
 - -until Current value in list > NewItem
 - -Pointer of Previous points to NewItem
 - -NewItem points to Current
 - -update free space list
 - -Mention of any special cases e.g. NewItem being First in list // list empty // list full // no free space

- 9 (a) -reverse Polish expressions can be processed directly from left to right
 - -Is free of ambiguities
 - -does not require brackets
 - -does not require use of rules of precedence

Mark points:

- -at least two operators shown between transitions
- -a and b in first stage
- -a+b after first operator
- -e,d,c, (a+b) in stack in correct order
- -(d-e)
- -c*(d-e)
- -(a+b)-c*(d-e)

TEAM **LEAGUE** 10 One to many [2]

[2] (ii) Many to many **TEAM GROUND**

- (iii) -Link table needed...
 - -with primary key made up of combination of primary keys of TEAM and GROUND
 - -Primary keys of TEAM and GROUND used as foreign keys in link table
 - -This turns the many to many relationship into..// a many-to-many relationship can not be implemented
 - -One-to-many and many-to-one/ 2x one-to-many relationships (1 per -, max 4) [4]

			2.	
Page 7	Mark Scheme: Teachers' version	Syllabus	er	1
	GCE A LEVEL – May/June 2011	9691	23	

- **11 (a)** -Interpreter translates one instruction, runs it before going on to the next translates all the instructions before run.
 - -Compiler creates object code/executable file // Interpreter does not
 - -Interpreter makes for easier debugging
 - -Compiled programs will execute faster // interpreted code will execute slower
 - -Interpreter must be present to run the program // compiler not needed at runtime
 - -Interpreter will translate code in loops more than once // Compiler only once
 - -once compiled no further translation needed // every program execution requires interpreter (1 per -, max 3)
 - (b) (i) -Contents copied from PC
 - -Contents changed to the operand/address part of CIR

[2]

- (ii) -Instruction copied from memory/location to MDR when contents of MAR are from PC
 - -Data copied from memory/location to MDR when instruction is LOAD
 - -Data copied from ALU/Accumulator to MDR when instruction is STORE [max 2]
- 12 -Must safeguard against unauthorised access to the computer system
 - -Firewall used to restrict access to known sources
 - -Control access to the network using accounts/user IDs with passwords // procedures in place for authentication
 - -File contents can be encrypted
 - -procedures in place to protect against malware
 - -all payments/communication can be made through a secure connection
 - -need to safeguard against bogus websites
 - -Procedures in place for authorisation of resources
 - -Users allocated access rights to various resources // users have access to certain files/folders only
 - -Files can be password protected / read-only
 - -users can access the network from certain terminals only / certain times of the day only
 - -use of digital signatures

(1 per -, max 6) [6]