WWW. Palls

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9691 COMPUTING

9691/32

Paper 3 (Written Paper), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		7	-	
Page 2	Mark Scheme: Teachers' version	Syllabus	er er	
	GCE A LEVEL – October/November 2011	9691	100	

- 1 (a) -Temporarily storing data...
 - -ensures jobs are kept separate (// ensures no jobs are lost)
 - -to compensate for different speeds of operation of devices
 - -when jobs sent to a single device

(1 per -, max 2)

- (b) -Print jobs are stored on central/temporary storage
 - -Reference to job is stored
 - -along with location of print job on the storage medium
 - -Jobs are held in print queue
 - -Jobs may be given a priority
 - -the job at the top of the print queue/ highest priority is the next to be printed (1 per -, max 4)

[4]

[3]

[3]

- 2 (a) (i) -Stores the address of the memory location to be used next
 - -The value/address in the PC is loaded into the MAR...
 - -to show the address of the instruction to be fetched
 - -The address /operand of the current instruction ...
 - -in the CIR (is loaded into the MAR)

(1 per -, max 3)

(1 per -, max 3)

- (ii) -Modifies the address held in the CIR...
 - -by the addition of the contents of IR/an integer...
 - -used in indexed addressing

(1 per -, max 3)

(b) -Buses connect up the different registers/components/devices in the computer

- -Data bus carries contents of a memory location/contents of a register/a data value/an address/an instruction
- -Data bus is bi-directional // data bus used to read/write data // Address bus is uni-directional //
- -Address bus carries an address of a memory location/device
- -the address bus carries an address from the processor to main memory / a device (1 per max 3)

[3]

			V .
Page 3	Mark Scheme: Teachers' version	Syllabus	er
	GCE A LEVEL – October/November 2011	9691	10

3 (a) (i) 395 = 0011 1001 0101 (1 per nybble)

(ii) 395 = 18B (1 per digit)

[3] COM

(b) (i) 01111111 01111111 (1 per byte)

[2]

(ii) 11111111 10000000 OR 10111111 10000000 (1 per byte)

[2]

```
(iii) 11111101 = -128 + (64+32+16+8+4+1) = -3

01101000 = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} = \frac{13}{16}

Number represented = \frac{13}{16} * \frac{1}{2} * 3 {\frac{1}{8}}

= \frac{13}{128} (or .1015625)
```

OR:

```
11111101 = -128 + (64+32+16+8+4+1) = -3
(01101000 = 0.1101)
= 0.1101 * 2^{-3}
= 0.0001101
= 1/16 + 1/32 + 1/128 = 13/128
```

Accept mantissa: -3/128 exponent: +104

(1 per line, max 4)

[4]

- 4 (a) -Danger of unauthorised access to the data // intrusion of privacy
 - -Data may be used against the patient's interests
 - -Data may be corrupted/inaccurate (making the information poor quality)
 - -Data may be used for purposes that the patient does not agree with // e.g. sale to drug companies ...

Page	e 4	Mark Scheme: Teachers' version		Syllabus	'S er
		GCE A LEVEL – October/N	lovember 2011	9691	700
					CON.
(b) _					'On
	Measure	•••	Explanation		100
Γ.	-Use of pa	asswords	to control access to	the data	- ci
Γ.	-Agreements of data use		to restrict how the da	ata can be use	d
	-patient p	ermission must be given	before data is passe	d to third party	•
	-some ac	cess to the data is made read	to control who can se	ee/amend wha	t
			II		I

Measure	Explanation
-Use of passwords	to control access to the data
-Agreements of data use	to restrict how the data can be used
-patient permission must be given	before data is passed to third party
-some access to the data is made read only // different users have different access rights	to control who can see/amend what data
-Data is encrypted	to make it incomprehensible
-protected by firewalls	to safeguard against unauthorized
	access
-Data is kept physically safe	example
-backing up files	to safeguard data security
-validation checks done on data	safeguards data integrity
input/amendments	
-patients allowed access to their own	so that accuracy can be verified/
data	corrections can be made
-punishment e.g. fines	to discourage misuse of data

Mark as follows:

3 × Measure + explanation

2 × Measure only

[5]

- (a) E.g. -Touch sensor/pressure sensor/infrared sensor/other sensible 5
 - -Needed to tell robot when components arrive/To investigate orientation of component/to tell when it has applied enough pressure to pick it up
 - E.g. -Actuator (electric motor/stepper motor/end effecter) of some sort
 - -Needed to move robot arm/to physically interact with component/to screw the two components together
 - -(Speaker/LCD display) conditional on:
 - -a description of error reporting (2 or 0 marks)

(1 per -, max 4) [4]

- (b) e.g.-Cheaper, do not need to be paid
 - -Work 24/7
 - -Do not require heat, light, space, ventilation, facilities
 - -robots can work in hazardous environments
 - -Items/actions produced are all to a consistent high standard // fewer errors
 - -Reliable/workers can be off work/will never strike
 - -Actions are more accurate than those of human.

(1 per -, max 4) [4]

- (c) -May involve simply changing from one stored program to another
 - -set new parameters for current program
 - -edit program / writing new program code
 - -by physically being moved through intermediate positions ...
 - -...which the system can then replicate

(1 per -, max 3) [3]

	Page 5	Mark Scheme: Teachers' version	Syllabus
		GCE A LEVEL – October/November 2011	9691
6	-scheduling i	s designed to maximise use of resources	Cany
	-Scheduling uses three states for jobs -ready/runable/Waiting in ready queue -blocked/suspended because they are waiting for resource to become available -running the job being processed		ome available

- 6 -scheduling is designed to maximise use of resources
 - -Scheduling uses three states for jobs
 - -ready/runable/Waiting in ready queue
 - -blocked/suspended because they are waiting for resource to become available
 - **-running** the job being processed
 - -HLS manages which job is the next to be loaded into ready queue
 - -LLS manages which runable job is allocated processor time next
 - -Name of a scheduling algorithm, e.g. round robin, priority queue
 - -...with explanation

(1 per -, max 6)

[6]

(a) (i)

[1]

(1 per relationship, 1 for sensibly named link table)

[3]

- (b) (i) -Attribute/Field which is unique to record and is used to identify it // identifier for a tuple
 - -e.g. PatientID in PATIENT table

[2]

- (ii) -Attribute in one table which links to the primary key in another table
 - -e.g. DoctorID in PATIENT table

[2]

- (iii) -a field/attribute used to sort/search/index the table (on an attribute other than the primary key)
 - -e.g. Patient name in the PATIENT table to search for a patient by name // Illness in the patient table to find a list of all patients with a particular illness [2]
- (i) -Describes machine code/assembly language 8
 - -languages which use the basic machine operations of the processor
 - -close to the architecture of the processor
 - -assembly language has a one-to-one mapping with machine code
 - -assembly language uses mnemonics/labels

- (ii) -problems are modelled with objects
 - -objects are defined in a class
 - -Objects contain both the properties/data/attributes and the methods (needed to manipulate the properties)
 - -properties can be read or written using methods
 - -Uses inheritance to allow some objects to use the data and methods of a parent class
 - -Mention of data encapsulation

			332	
Page 6		Mark Scheme: Teachers' version	Syllabus	
		GCE A LEVEL – October/November 2011	9691	
(iii)	-not -the -Con -Rule -Mer	scribes what is to be accomplished how no algorithm written user states what is to be found/set a goal nsists of a set of facts and rules les are applied to the data until the goal is reached ntion of backtracking/instantiation er -, max 2)	Syllabus Part er 9691 Part ann bhing	0.
(iv)	-lend -usin	egram describes how to solve the problem in a sequence ds itself to top-down design / modularisation ng procedures/functions er -, max 2)	e of steps/algorithm [2]	
(a) (i)	-toke -Che -Erro -prod Also -Jum -data -Che	nes after the lexical analysis stage enised version of program is scanned eck on format/grammar of statements // or by example of or diagnostics are issued as appropriate duces code ready for the code generation stage of accept: np destinations/labels checked for existence a type mismatch eck that variables have been declared eck for existence of library modules		
	(1 p∈	er -, max 4)	[4]	
(ii)	-the to -as o -exa	exical analysis stage keywords are identified by compart format of instruction/token string is compared to forms for acceptable expressions and statements. defined by the meta language used ample of a syntax error e.g. IF THEN x=3 er -, max 3)	ring to list of accepted words [3]	
(b) (i)	-obje -com -the -Con -Con	ect code is difficult to interfere with ect code runs faster than interpreted source code npiler can optimise executable code code is not translated each time the program is run mpiler does not need to be present when the program is mpiled code will be free from syntax errors er -, max 2)	s run [2]	
(ii)	-repo -stop -Part writte -erro	ors are (<u>more</u>) easily located orts errors when source code is present pping at the point of the error rts (only) of program can be tested / testing can be staten ors when found can be immediately corrected. er -, max 2)	arted before all the program is	
	•	·		

		2.
Page 7	Mark Scheme: Teachers' version	Syllabus
	GCE A LEVEL – October/November 2011	9691

- 10 (a) (i) if there is a digit at the end it must be a <non-zero-digit> // can't end in a 0
 - (ii) W is not defined as a <letter> // W is not allowed
 - (iii) can't end with two digits

b) 5 is a <non-zero-digit> therefore it is a <digit>

(b) 5 is a <non-zero-digit> therefore it is a <digit>
6 is a <non-zero-digit>
y is a <letter> and therefore is a <group>
A is a <letter>, hence Ay is <letter><group> therefore it is a <group>
(1 mark per line)

[4]