UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

CANDIDATE NAME

CENTRE NUMBER

CANDIDATE NUMBER

COMPUTING

9691/32
Paper 3
May/June 2012
2 hours
Candidates answer on the Question Paper.
No additional materials are required.
No calculators allowed.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
No marks will be awarded for using brand names for software packages or hardware.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

1 A database is designed to store data about students at a college and the subjects th study.

- All students are based in a tutor group
- A tutor supervises all the students in their tutor group
- Each subject has one subject teacher only
- Students study a number of subjects

The following table StudentSubjects was a first attempt at the database design.
Table: StudentSubjects

StudentName	TutorGroup	Tutor	Subject	Level	SubjectTeacher
Tom	6	SAN	Physics	A	SAN
			Chemistry	A	MEB
		Gen. Studies	AS	DIL	
		MEB	Geography	AS	ROG
			French	AS	HEN
Samir		SAN	Computing	A	VAR
			Chemistry	A	MEB
		Maths	A	COR	
			Gen. Studies	A	DIL

(a) (i) Explain why the table is not in First Normal Form (1NF).
\qquad
\qquad
(ii) Explain your answer by referring to the above data.
\qquad
\qquad
(b) The design is changed to the following:

Student (StudentName, TutorGroup, Tutor)
StudentSubjectChoices (StudentName, Subject, Level, SubjectTeacher)

Using the data given in the original table, show how this data is now stored revised table designs.

Table: Student

StudentName	TutorGroup	Tutor

Table: StudentSubjectChoices

StudentName	Subject	Level	SubjectTeacher

(c) (i) Explain what is meant by a primary key.
\qquad
\qquad
\qquad
\qquad
(ii) A student is not allowed to choose the same subject at A Level and AS.

What is the primary key of table StudentSubjectChoices?
(iii) There is a relationship between tables Student and StudentSubjectCho Explain how the relationship is established using a primary key and foreign key.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The design of table StudentSubjectChoices is:

StudentSubjectChoices (StudentName, Subject, Level, SubjectTeacher)
Explain why this table is not in Second Normal Form (2NF).
\qquad
\qquad
\qquad
\qquad
(e) The design of table Student is:

Student (StudentName, TutorGroup, Tutor)
Explain why this table is not in Third Normal Form (3NF).
\qquad
\qquad
\qquad
\qquad

2 A binary pattern can be used to represent different data used in a computer system.
(a) Consider the binary pattern: 01010011

The pattern represents an integer.
What number is this in denary?
正
(b) Consider the binary pattern: 000101010011

The pattern represents a Binary Coded Decimal (BCD) number.
What number is this in denary?
(c) Consider the binary pattern: 10010010

This represents a two's complement integer.
What number is this in denary?
(d) Floating point is to be used to represent real numbers with:

- 8 bits for the mantissa, followed by
- 4 bits for the exponent
- two's complement used for both the mantissa and the exponent
(i) Consider the binary pattern:

0	1	1	0	1	0	0	0
0	0	1	0	0			

What number is this in denary? Show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The representation shown in part (d)(i) is normalised.

Explain why floating point numbers are normalised.
\qquad
\qquad
(iii) Show the binary pattern for the smallest positive number which can be stored using a normalised 12-bit floating point representation.

Mantissa:
\square

Exponent:

Work out its denary value.
(e) The developer of a new programming language decides that all real numbers stored using 20 -bit normalised floating point representation. She cannot decide many bits to use for the mantissa and how many for the exponent.

Explain the trade-off between using either a large number of bits for the mantissa, or a large number of bits for the exponent.
\qquad
\qquad
\qquad

3 (a) Customer names are stored in the array Customer. An algorithm is to be designed to perform a serial search of the array for a reque customer name.
The algorithm will use the variables shown in the table.
Study the table and the algorithm and fill in the gaps.

Identifier	Data Type	Description
Customer	ARRAY[2000] OF STRING	The customer names
Index	INTEGER	Index position in the customer array
IsFound		
SearchName	STRING	The requested customer name

```
//Serial search algorithm
INPUT
IsFound }\leftarrow\mathrm{ FALSE
Index }\leftarrow
```

REPEAT
IF Customer [... = SearchName
THEN
IsFound \leftarrow TRUE
OUTPUT "FOUND - at position " Index " in the array"
ELSE
Index \leftarrow
ENDIF
UNTIL (IsFound = TRUE) OR
IF
THEN
OUTPUT "Customer name was NOT FOUND"
ENDIF
(b) Comment on the efficiency of the serial search algorithm in part (a) for retrieving a data item from an array with 2000 items.
\qquad
\qquad
\qquad
(c) A binary search may be an alternative algorithm to a serial search.
(i) Describe how this algorithm works. (Do not attempt to write the pseudocode.)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A binary search is made to locate Cherry.

1	Apple
	Aanana
3	Cherry
4	Kiwi
5	Lemon
6	Mango
	Plum

List, in order, the comparisons which are made.
\qquad
\qquad
\qquad

4 Expressions can be written in either infix or reverse Polish notation.
(a) Evaluate this reverse Polish expression:

46 * 3 -
(b) Write the following infix expressions in reverse Polish.
(i) $(a-5) /(b+c)$
\qquad
\qquad
(ii) $2 * 3+6 / 2$
\qquad
(c) Describe one benefit of storing an expression in reverse Polish.
\qquad
\qquad
(d) An expression in reverse Polish can be evaluated on a computer system using a stack.
(i) Describe the operation of a stack.
\qquad
\qquad
(ii) A stack is to be implemented as an array with an integer variable to point to the 'top of stack' index position.

State whether this is a static data structure or a dynamic data structure and explain your choice.
\qquad
\qquad
\qquad
\qquad
(iii) The reverse Polish expression $37 * 6+9 /$ is to be evaluated using The first available location on the stack is 1 .

Show how the contents of the stack change as this expression is evaluated.

5 The table shows the assembly language instructions for a processor which has one purpose register - the Accumulator.

Instruction		Explanation
Op Code	Operand	
LDD <address>	Load using direct addressing	
STO <address>	Store the contents of the Accumulator at the given address	
LDI <address>	Load using indirect addressing	
LDX <address>	Load using indexed addressing	
INC	Add 1 to the contents of the Accumulator	
END	End the program and return to the operating system	

(a) Write on the diagram to explain the instruction shown.

Show the contents of the Accumulator after the execution of the instruction.

LDD 105

Accumulator

	Main memory	
100	01000000	
101	01101000	
102	11111110	
103	11111010	
104	01011101	
105	00010001	
106	10101000	
107	11000001	
	\int	
200	10011111	

(b) Write on the diagram to explain the instruction shown.

Show the contents of the registers after the execution of the instruction.
LDX 101

Accumulator

Index Register 00000011

	Main memory
100	01000000
101	01101000
102	11111110
103	11111010
104	01011101
105	00010001
106	10101000
107	11000001
γ	\checkmark
200	10011111

(c) Trace this assembly language program using the trace table below.

500		
501		
502	LDD	507
503	INC	
504	STO	509
505	LDD	508
506	INC	
507	STO	510
508	END	
509	22	
510	170	
	0	

Accumulator

Memory Address			
507	508	509	510
22	170	0	0

(d) Explain the relationship between assembly language instructions and machine code instructions.
\qquad
\qquad

6 In a multiprogramming environment the operating system includes a scheduler.
(a) Explain the purpose of the scheduler.
\qquad
\qquad
(b) A process will at any time be in one of three states.
(i) Name and describe each possible state.

1
\qquad
\qquad
2 \qquad
\qquad
\qquad
3 \qquad
\qquad
\qquad
(ii) How will the operating system keep details about the state of all processes?
\qquad
\qquad
(c) Any process can be described as either 'processor bound' or 'input/output bouna
(i) Explain what is meant by these terms and give a typical application of each.
\qquad
\qquad
Application which is processor bound \qquad
\qquad
Input/Output bound \qquad
\qquad
Application which is I/O bound \qquad
(ii) A particular scheduler allocates a priority to each process for the use of the processor.

State which type of process - processor bound or I/O bound - would be given higher priority for the use of the processor. Explain why.
\qquad
\qquad
\qquad

7 (a) Define what is meant by the term computer simulation.
\qquad
\qquad
\qquad
(b) Give two reasons why a computer system is particularly suited to carrying out a simulation.

1 \qquad
\qquad
2 \qquad
(c) A supermarket is about to open a new branch and is to use a computer simulation to estimate the number of checkouts which will be required.

Identify three variables which need to be controlled by the software simulation of the checkout operation.

1
2
3
(d) The values input to the simulation will affect the outputs produced.

Give one example for this checkout scenario of a change to an input which will directly affect the output.

Input change \qquad
\qquad
Effect on the output \qquad

