

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

MATHEMATICS (US)

Paper 7 Probability and Statistics 2 (S2) SPECIMEN MARK SCHEME 9280/07 For Examination from 2013

1 hour 15 minutes

MAXIMUM MARK: 50

This document consists of 5 printed pages and 1 blank page.

Mark Scheme Notes

Marks are of the following three types:

- www.papacambridge.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips, or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g., by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{1}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g., wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained that is correct to 3 s.f., or that would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers that arise from taking *q* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- www.papaCambridge.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasizing that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{2}$ " marks. MR is not applied when the candidate misreads their own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

3

	4	1.2 seen 1 – Poisson P(0, 1, 2, 3) attempted, any λ , and 1 end error SC: using Bin, ans 0.120: B1
Poisson $\lambda = 1.2$	B1 B1	1.2 seen
$1 - e^{-1.2}(1 + 1.2 + \frac{1.2^2}{2}) = 0.121$	M1 A1 [4]	1 – Poisson P(0, 1, 2, 3) attempted, any λ , and 1 end error SC: using Bin, ans 0.120: B1
(a) $41.2 \pm z \times \sqrt{\frac{32.6}{50}}$ z = 1.96	M1 B1	
[39.6, 42.8] (3 sfs) (b) $2 \times \frac{1}{16}$ or $\frac{1}{8}$ or 0.125 or 12.5%	A1 [3] M1	Allow any brackets or none, or < or "to" etc. or 0.875
$\alpha = 87.5\%$ $85.7-85$	A1 [2]	
3 (i) $\frac{4.8}{\sqrt{n}}$ (= 1.786) $n = \left(\frac{1.786 \times 4.8}{0.7}\right)^2$ = 150	M1 A1 A1	Correct equation in <i>n</i>
(ii) $H_0: \mu = 85.0$ $H_1: \mu > 85.0$	[3] B1	
z = 1.645 Evidence that μ increased	M1 A1	Comparison 1.786 and 1.645 Allow 1.96 if $H_1: \mu \neq 85.0$ \checkmark Correct conc. No contradictions. ft H_1
 (a) g: Area ≠ 1 or > 1 h: pdf cannot be neg 	[3] B1 B1 [2]	
(b) (i) $\int_{10}^{15} \frac{30}{x} dx$	M1	Attempt integ $xf(x)$, ignore limits
$= [30 \ln x]_{10}^{15}$ = 30(ln15 - ln10) (= 30ln1.5 AG)	A1 A1 [3]	Correct integrand and limits or $30\ln(\frac{15}{10})$
(ii) $\int_{10}^{m} \frac{30}{x^2} dx = 0.5$	M1	Integ $f(x) = 0.5$, limits 10 to unknown
$\begin{bmatrix} 10 \\ [-30x^{-1}] \\ \frac{m}{10} = 0.5 \\ -\frac{30}{m} - (-\frac{30}{10}) = 0.5 \end{bmatrix}$	A1	Correct integrand, limits and $= 0.5$
m = 12	A1	
$ \begin{array}{c} 30\ln 1.5 \\ \int \frac{30}{x^2} \mathrm{d}x \\ $	M1	
= 0.0337 (3 sfs)	A1 [5]	

				F	320
			;	5	23
5	(i)	<i>W</i> ~N(2240, 848)	B2		B1 each parameter
		$\frac{2200 - 2240}{\sqrt{848}} (= -1.374)$			B1 each parameter Standardize either value and evaluate correctly
		$\Phi(``-1.374") = 1 - \Phi(``1.374") \ (= 0.0847)$			
		$\frac{2300-2240}{2}$ (= 2.060)			
		$\sqrt{848}$ (2.000)			
		$\Phi(``2.060") (= 0.9803) \\ \Phi(``2.060") - (1 - \Phi(``1.374"))$	M1A M1	1	Standardize either value and evaluate correctly Correct combination of Φ 's
		= 0.896 (3 sfs)	Al		
				[6]	
	(ii)	$X_1 - X_2 \sim N(0, 392)$	B1		May be implied
		$\frac{20-0}{\sqrt{392}} \tag{=} 1.010$	M1		
		$\sqrt{592}$ ($\Phi($ "1.010" = 0.8438)			
		$P(X > 20) = 1 - \Phi(``1.010")$ (= 0.1562)	A1		
		$2 \times P(X > 20)$ = 0.312 (3 sfs)	M1 A1		
		0.512 (5 515)	111	[5]	
6	(i)	mean = 6.3	B1		B1 for 6.3
		$P(X \le 1) = e^{-6.3}(1+6.3) = 0.0134$	M1		Allow incorrect λ in both probs
		$P(X \le 2) = e^{-6.3}(1 + 6.3 + \frac{6.3^2}{2}) = 0.0498$	M1A	.1	
		CR is $X \le 1$	A1	[5]	A1 for both values
	(ii)	$P(Type I error) = P(X \le 1) = 0.0134$	B1	[5]	
	()			[1]	
	(iii)	$H_0: \lambda = 6.3$ $H_1: \lambda < 6.3$	B1		Can be scored in (i). Accept $\lambda = 2.1$ (per month)
		3 not in CR No evidence mean no. of injuries has	M1		or $P(X \le 3) = 0.126 > 0.02$
		decreased	A1		Correct conclusion
				[3]	
	(iv)	N(25.2, 25.2)	B2		B1 for N & $\mu = 25.2$. B1 for $\sigma^2 = 25.2$
		19.5-25.2			May be implied
		$\frac{15.5 - 25.2}{\sqrt{25.2}} \qquad (= -1.135)$	M1		Allow with wrong or no cc or no $\sqrt{2}$
		$\Phi(\text{``-1.135''}) = 1 - \Phi(\text{``1.135''})$	M1		Correct area
		= 0.128 (3 sfs)	A1		
				[5]	

BLANK PAGE

6