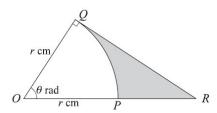

May/June 2002

7

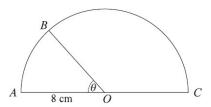

The diagram shows the circular cross-section of a uniform cylindrical log with centre O and radius 20 cm. The points A, X and B lie on the circumference of the cross-section and AB = 32 cm.

- (i) Show that angle AOB = 1.855 radians, correct to 3 decimal places. [2]
- (ii) Find the area of the sector *AXBO*. [2]

The section AXBCD, where ABCD is a rectangle with $AD = 18 \,\mathrm{cm}$, is removed.

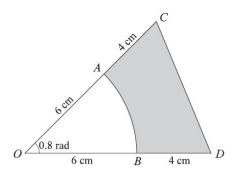
Nov/Dec 2002

3



In the diagram, OPQ is a sector of a circle, centre O and radius r cm. Angle $QOP = \theta$ radians. The tangent to the circle at Q meets OP extended at R.

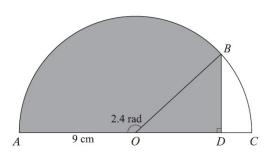
- (i) Show that the area, $A \text{ cm}^2$, of the shaded region is given by $A = \frac{1}{2}r^2(\tan \theta \theta)$. [2]
- (ii) In the case where $\theta = 0.8$ and r = 15, evaluate the length of the perimeter of the shaded region. [4]


May/June 03

9

The diagram shows a semicircle ABC with centre O and radius 8 cm. Angle $AOB = \theta$ radians.

- (i) In the case where $\theta = 1$, calculate the area of the sector *BOC*. [3]
- (ii) Find the value of θ for which the perimeter of sector AOB is one half of the perimeter of sector BOC.
- (iii) In the case where $\theta = \frac{1}{3}\pi$, show that the exact length of the perimeter of triangle ABC is $(24 + 8\sqrt{3})$ cm.

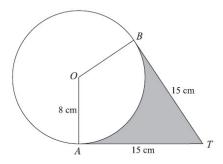


In the diagram, OCD is an isosceles triangle with OC = OD = 10 cm and angle COD = 0.8 radians. The points A and B, on OC and OD respectively, are joined by an arc of a circle with centre O and radius 6 cm. Find

- (i) the area of the shaded region, [3]
- (ii) the perimeter of the shaded region. [4]

May/June 2005

8

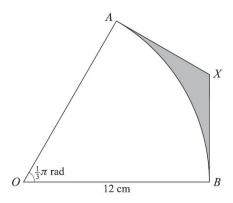


In the diagram, ABC is a semicircle, centre O and radius 9 cm. The line BD is perpendicular to the diameter AC and angle AOB = 2.4 radians.

- (i) Show that BD = 6.08 cm, correct to 3 significant figures. [2]
- (ii) Find the perimeter of the shaded region. [3]
- (iii) Find the area of the shaded region. [3]

May/June 2006

7

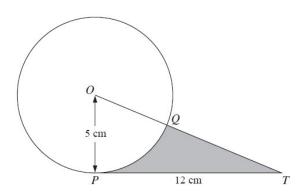


The diagram shows a circle with centre O and radius 8 cm. Points A and B lie on the circle. The tangents at A and B meet at the point T, and AT = BT = 15 cm.

- (i) Show that angle *AOB* is 2.16 radians, correct to 3 significant figures. [3]
- (ii) Find the perimeter of the shaded region. [2]

[3]

(iii) Find the area of the shaded region.

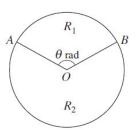


In the diagram, OAB is a sector of a circle with centre O and radius 12 cm. The lines AX and BX are tangents to the circle at A and B respectively. Angle $AOB = \frac{1}{3}\pi$ radians.

- (i) Find the exact length of AX, giving your answer in terms of $\sqrt{3}$. [2]
- (ii) Find the area of the shaded region, giving your answer in terms of π and $\sqrt{3}$. [3]

May/June 2008

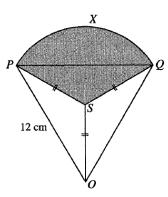
5



The diagram shows a circle with centre O and radius 5 cm. The point P lies on the circle, PT is a tangent to the circle and PT = 12 cm. The line OT cuts the circle at the point Q.

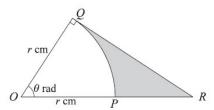
- (i) Find the perimeter of the shaded region. [4]
- (ii) Find the area of the shaded region. [3]

May/June 2009


5

The diagram shows a circle with centre O. The circle is divided into two regions, R_1 and R_2 , by the radii OA and OB, where angle $AOB = \theta$ radians. The perimeter of the region R_1 is equal to the length of the major arc AB.

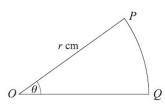
(i) Show that
$$\theta = \pi - 1$$
.


(ii) Given that the area of region R_1 is $30 \,\mathrm{cm}^2$, find the area of region R_2 , correct to 3 significant figures.

The diagram shows an equilateral triangle OPQ, of side 12 cm, and the point S such that OS = PS = QS. The arc PXQ has centre O and radius 12 cm. Find the perimeter of the shaded region, giving your answer in terms of π and $\sqrt{3}$.

Oct/Nov 2002

3



In the diagram, OPQ is a sector of a circle, centre O and radius r cm. Angle $QOP = \theta$ radians. The tangent to the circle at Q meets OP extended at R.

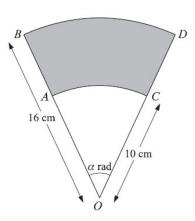
- (i) Show that the area, $A \text{ cm}^2$, of the shaded region is given by $A = \frac{1}{2}r^2(\tan \theta \theta)$. [2]
- (ii) In the case where $\theta = 0.8$ and r = 15, evaluate the length of the perimeter of the shaded region. [4]

Oct/Nov 2003


6

The diagram shows the sector OPQ of a circle with centre O and radius r cm. The angle POQ is θ radians and the perimeter of the sector is 20 cm.

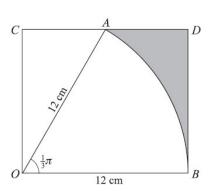
(i) Show that
$$\theta = \frac{20}{r} - 2$$
. [2]


- (ii) Hence express the area of the sector in terms of r. [2]
- (iii) In the case where r = 8, find the length of the chord PQ. [3]

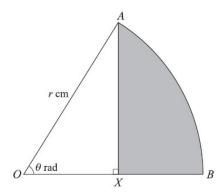
In the diagram, AC is an arc of a circle, centre O and radius 6 cm. The line BC is perpendicular to OC and OAB is a straight line. Angle $AOC = \frac{1}{3}\pi$ radians. Find the area of the shaded region, giving your answer in terms of π and $\sqrt{3}$.

Oct/Nov 2005

2



In the diagram, OAB and OCD are radii of a circle, centre O and radius 16 cm. Angle $AOC = \alpha$ radians. AC and BD are arcs of circles, centre O and radii 10 cm and 16 cm respectively.

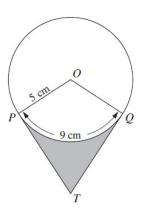

- (i) In the case where $\alpha = 0.8$, find the area of the shaded region. [2]
- (ii) Find the value of α for which the perimeter of the shaded region is 28.9 cm. [3]

Oct/Nov 2006

3

In the diagram, AOB is a sector of a circle with centre O and radius 12 cm. The point A lies on the side CD of the rectangle OCDB. Angle $AOB = \frac{1}{3}\pi$ radians. Express the area of the shaded region in the form $a(\sqrt{3}) - b\pi$, stating the values of the integers a and b.

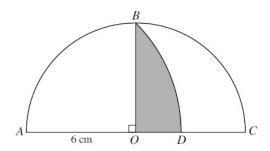
In the diagram, AB is an arc of a circle, centre O and radius r cm, and angle $AOB = \theta$ radians. The point X lies on OB and AX is perpendicular to OB.


(i) Show that the area, $A \text{ cm}^2$, of the shaded region AXB is given by

$$A = \frac{1}{2}r^2(\theta - \sin\theta\cos\theta).$$
 [3]

(ii) In the case where r = 12 and $\theta = \frac{1}{6}\pi$, find the perimeter of the shaded region AXB, leaving your answer in terms of $\sqrt{3}$ and π .

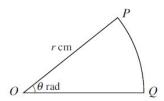
Oct/Nov 2008


6

In the diagram, the circle has centre O and radius 5 cm. The points P and Q lie on the circle, and the arc length PQ is 9 cm. The tangents to the circle at P and Q meet at the point T. Calculate

(i) angle
$$POQ$$
 in radians, [2]

(ii) the length of
$$PT$$
, [3]



The diagram shows a semicircle ABC with centre O and radius 6 cm. The point B is such that angle BOA is 90° and BD is an arc of a circle with centre A. Find

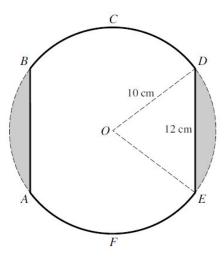
(i) the length of the arc
$$BD$$
, [4]

Oct/Nov 2009/12

7

A piece of wire of length 50 cm is bent to form the perimeter of a sector POQ of a circle. The radius of the circle is r cm and the angle POQ is θ radians (see diagram).

(i) Express θ in terms of r and show that the area, $A \text{ cm}^2$, of the sector is given by

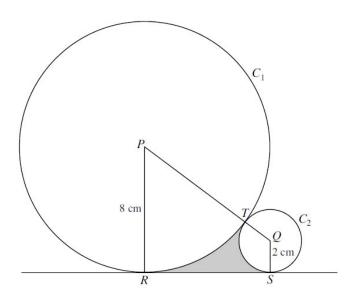

$$A = 25r - r^2.$$

(ii) Given that r can vary, find the stationary value of A and determine its nature. [4]

May/June 2010/11

May/June 2010/12

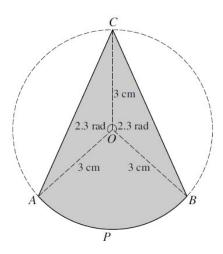
May/June 2010/13



The diagram shows a metal plate ABCDEF which has been made by removing the two shaded regions from a circle of radius 10 cm and centre O. The parallel edges AB and ED are both of length 12 cm.

- (i) Show that angle *DOE* is 1.287 radians, correct to 4 significant figures. [2]
- (ii) Find the perimeter of the metal plate. [3]
- (iii) Find the area of the metal plate. [3]

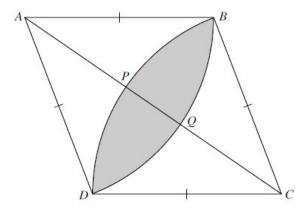
Oct/Nov 2010/11


9

The diagram shows two circles, C_1 and C_2 , touching at the point T. Circle C_1 has centre P and radius 8 cm; circle C_2 has centre Q and radius 2 cm. Points R and S lie on C_1 and C_2 respectively, and RS is a tangent to both circles.

(i) Show that
$$RS = 8 \text{ cm}$$
. [2]

- (ii) Find angle *RPQ* in radians correct to 4 significant figures. [2]
- (iii) Find the area of the shaded region. [4]



The diagram shows points A, C, B, P on the circumference of a circle with centre O and radius 3 cm. Angle AOC = angle BOC = 2.3 radians.

- (i) Find angle AOB in radians, correct to 4 significant figures. [1]
- (ii) Find the area of the shaded region *ACBP*, correct to 3 significant figures. [4]

Oct/Nov 2010/13

8

The diagram shows a rhombus ABCD. Points P and Q lie on the diagonal AC such that BPD is an arc of a circle with centre C and BQD is an arc of a circle with centre A. Each side of the rhombus has length 5 cm and angle BAD = 1.2 radians.

- (i) Find the area of the shaded region BPDQ. [4]
- (ii) Find the length of PQ. [4]