Past Year: Chapter 5 Trigonometry

May/June 2002

2 (i) Show that $\sin x \tan x$ may be written as $\frac{1 - \cos^2 x}{\cos x}$. [1]

(ii) Hence solve the equation $2 \sin x \tan x = 3$, for $0^{\circ} \le x \le 360^{\circ}$. [4]

6 The function f, where $f(x) = a \sin x + b$, is defined for the domain $0 \le x \le 2\pi$. Given that $f(\frac{1}{2}\pi) = 2$ and that $f(\frac{3}{2}\pi) = -8$,

(i) find the values of a and b, [3]

(ii) find the values of x for which f(x) = 0, giving your answers in radians correct to 2 decimal places, [2]

(iii) sketch the graph of y = f(x). [2]

Nov/Dec 2002

5 (i) Show that the equation $3 \tan \theta = 2 \cos \theta$ can be expressed as

$$2\sin^2\theta + 3\sin\theta - 2 = 0.$$
 [3]

(ii) Hence solve the equation $3 \tan \theta = 2 \cos \theta$, for $0^{\circ} \le \theta \le 360^{\circ}$. [3]

6

In the diagram, triangle ABC is right-angled and D is the mid-point of BC. Angle $DAC = 30^{\circ}$ and angle $BAD = x^{\circ}$. Denoting the length of AD by l,

(i) express each of AC and BC exactly in terms of l, and show that $AB = \frac{1}{2}l\sqrt{7}$, [4]

(ii) show that $x = \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - 30$. [2]

May/June 03

2 Find all the values of x in the interval $0^{\circ} \le x \le 180^{\circ}$ which satisfy the equation $\sin 3x + 2\cos 3x = 0$.

May/June 2004

- 3 (i) Show that the equation $\sin^2 \theta + 3 \sin \theta \cos \theta = 4 \cos^2 \theta$ can be written as a quadratic equation in $\tan \theta$. [2]
 - (ii) Hence, or otherwise, solve the equation in part (i) for $0^{\circ} \le \theta \le 180^{\circ}$. [3]

May/June 2005

- 3 (i) Show that the equation $\sin \theta + \cos \theta = 2(\sin \theta \cos \theta)$ can be expressed as $\tan \theta = 3$. [2]
 - (ii) Hence solve the equation $\sin \theta + \cos \theta = 2(\sin \theta \cos \theta)$, for $0^{\circ} \le \theta \le 360^{\circ}$. [2]
- 7 A function f is defined by $f: x \mapsto 3 2\sin x$, for $0^{\circ} \le x \le 360^{\circ}$.
 - (i) Find the range of f. [2]
 - (ii) Sketch the graph of y = f(x). [2]

A function g is defined by $g: x \mapsto 3 - 2\sin x$, for $0^{\circ} \le x \le A^{\circ}$, where A is a constant.

- (iii) State the largest value of A for which g has an inverse. [1]
- (iv) When A has this value, obtain an expression, in terms of x, for $g^{-1}(x)$. [2]

May/June 2006

2 Solve the equation

$$\sin 2x + 3\cos 2x = 0,$$

for
$$0^{\circ} \leqslant x \leqslant 180^{\circ}$$
.

6

In the diagram, ABC is a triangle in which AB = 4 cm, BC = 6 cm and angle $ABC = 150^{\circ}$. The line CX is perpendicular to the line ABX.

- (i) Find the exact length of BX and show that angle $CAB = \tan^{-1} \left(\frac{3}{4+3\sqrt{3}} \right)$. [4]
- (ii) Show that the exact length of AC is $\sqrt{(52 + 24\sqrt{3})}$ cm. [2]

May/June 2007

3 Prove the identity
$$\frac{1 - \tan^2 x}{1 + \tan^2 x} \equiv 1 - 2\sin^2 x$$
. [4]

- 8 The function f is defined by $f(x) = a + b \cos 2x$, for $0 \le x \le \pi$. It is given that f(0) = -1 and $f(\frac{1}{2}\pi) = 7$.
 - (i) Find the values of a and b. [3]
 - (ii) Find the x-coordinates of the points where the curve y = f(x) intersects the x-axis. [3]
 - (iii) Sketch the graph of y = f(x). [2]

May/June 2008

In the triangle ABC, AB = 12 cm, angle $BAC = 60^{\circ}$ and angle $ACB = 45^{\circ}$. Find the exact length of BC.

- 2 (i) Show that the equation $2 \tan^2 \theta \cos \theta = 3$ can be written in the form $2 \cos^2 \theta + 3 \cos \theta 2 = 0$. [2]
 - (ii) Hence solve the equation $2 \tan^2 \theta \cos \theta = 3$, for $0^\circ \le \theta \le 360^\circ$. [3]

May/June 2009

1 Prove the identity
$$\frac{\sin x}{1 - \sin x} - \frac{\sin x}{1 + \sin x} = 2 \tan^2 x$$
. [3]

4

The diagram shows the graph of $y = a \sin(bx) + c$ for $0 \le x \le 2\pi$.

- (i) Find the values of a, b and c.
- (ii) Find the smallest value of x in the interval $0 \le x \le 2\pi$ for which y = 0. [3]

Oct/Nov 2001

- 3 (i) Sketch and label, on the same diagram, the graphs of $y = \cos x$ and $y = \cos 3x$ for the interval $0 \le x \le 2\pi$.
 - (ii) Given that $f: x \mapsto \cos x$, for the domain $0 \le x \le k$, find the largest value of k for which f has an inverse. [2]
- 7 It is given that $a = 2\sin\theta + \cos\theta$ and $b = 2\cos\theta \sin\theta$, where $0^{\circ} \le \theta \le 360^{\circ}$.
 - (i) Show that $a^2 + b^2$ is constant for all values of θ . [3]
 - (ii) Given that 2a = 3b, show that $\tan \theta = \frac{4}{7}$ and find the corresponding values of θ . [4]

Oct/Nov 2002

5 (i) Show that the equation $3 \tan \theta = 2 \cos \theta$ can be expressed as

$$2\sin^2\theta + 3\sin\theta - 2 = 0.$$
 [3]

(ii) Hence solve the equation $3 \tan \theta = 2 \cos \theta$, for $0^{\circ} \le \theta \le 360^{\circ}$. [3]

In the diagram, triangle ABC is right-angled and D is the mid-point of BC. Angle $DAC = 30^{\circ}$ and angle $BAD = x^{\circ}$. Denoting the length of AD by l,

(i) express each of AC and BC exactly in terms of l, and show that $AB = \frac{1}{2}l\sqrt{7}$, [4]

(ii) show that
$$x = \tan^{-1}\left(\frac{2}{\sqrt{3}}\right) - 30$$
. [2]

Oct/Nov 2003

- 2 (i) Show that the equation $4\sin^4\theta + 5 = 7\cos^2\theta$ may be written in the form $4x^2 + 7x 2 = 0$, where $x = \sin^2\theta$. [1]
 - (ii) Hence solve the equation $4\sin^4\theta + 5 = 7\cos^2\theta$, for $0^\circ \le \theta \le 360^\circ$. [4]

Oct/Nov 2004

- 6 The function $f: x \mapsto 5\sin^2 x + 3\cos^2 x$ is defined for the domain $0 \le x \le \pi$.
 - (i) Express f(x) in the form $a + b \sin^2 x$, stating the values of a and b. [2]
 - (ii) Hence find the values of x for which $f(x) = 7 \sin x$. [3]
 - (iii) State the range of f. [2]

Oct/Nov 2005

1 Solve the equation
$$3\sin^2\theta - 2\cos\theta - 3 = 0$$
, for $0^{\circ} \le \theta \le 180^{\circ}$. [4]

Oct/Nov 2006

2 Given that $x = \sin^{-1}(\frac{2}{5})$, find the exact value of

(i)
$$\cos^2 x$$
, [2]

(ii)
$$\tan^2 x$$
. [2]

Oct/Nov 2007

- 5 (i) Show that the equation $3 \sin x \tan x = 8$ can be written as $3 \cos^2 x + 8 \cos x 3 = 0$. [3]
 - (ii) Hence solve the equation $3 \sin x \tan x = 8$ for $0^{\circ} \le x \le 360^{\circ}$. [3]

Oct/Nov 2008

2 Prove the identity

$$\frac{1+\sin x}{\cos x} + \frac{\cos x}{1+\sin x} \equiv \frac{2}{\cos x}.$$
 [4]

	The maximum value of $f(x)$ is 10 and the minimum value is -2 .			
	(i) Find the values of a and b .	[3]		
	(ii) Solve the equation $f(x) = 0$.	[3]		
	(iii) Sketch the graph of $y = f(x)$.	[2]		
Oct/	Nov 2009/11			
1	Solve the equation $3\tan(2x + 15^\circ) = 4$ for $0^\circ \le x \le 180^\circ$.	[4]		
2	The equation of a curve is $y = 3\cos 2x$. The equation of a line is $x + 2y = \pi$. On the same except the curve and the line for $0 \le x \le \pi$.	diagram, [4]		
Oct/Nov 2009/12				
4	The function f is defined by f: $x \mapsto 5 - 3\sin 2x$ for $0 \le x \le \pi$.			
	(i) Find the range of f.	[2]		
	(ii) Sketch the graph of $y = f(x)$.	[3]		
	(iii) State, with a reason, whether f has an inverse.	[1]		
5	(i) Prove the identity $(\sin x + \cos x)(1 - \sin x \cos x) \equiv \sin^3 x + \cos^3 x$.	[3]		
	(ii) Solve the equation $(\sin x + \cos x)(1 - \sin x \cos x) = 9\sin^3 x$ for $0^\circ \le x \le 360^\circ$.	[3]		
May	/June 2010/11			
1	The acute angle x radians is such that $\tan x = k$, where k is a positive constant. Express, in te	rms of k ,		
	(i) $\tan(\pi - x)$,	[1]		
	(ii) $\tan(\frac{1}{2}\pi - x)$,	[1]		
	(iii) $\sin x$.	[2]		
5	The function f is such that $f(x) = 2\sin^2 x - 3\cos^2 x$ for $0 \le x \le \pi$.			
	(i) Express $f(x)$ in the form $a + b \cos^2 x$, stating the values of a and b .	[2]		
	(ii) State the greatest and least values of $f(x)$.	[2]		
	(iii) Solve the equation $f(x) + 1 = 0$.	[3]		
May	/June 2010/12			
1	(i) Show that the equation			
	$3(2\sin x - \cos x) = 2(\sin x - 3\cos x)$			
	can be written in the form $\tan x = -\frac{3}{4}$.	[2]		
	(ii) Solve the equation $3(2\sin x - \cos x) = 2(\sin x - 3\cos x)$, for $0^{\circ} \le x \le 360^{\circ}$.	[2]		

5 The function f is such that $f(x) = a - b \cos x$ for $0^{\circ} \le x \le 360^{\circ}$, where a and b are positive constants.

11	The function $f: x \mapsto 4 - 3\sin x$ is defined for the domain $0 \le x \le 2\pi$.		
	(i) Solve the equation $f(x) = 2$.	[3]	
	(ii) Sketch the graph of $y = f(x)$.	[2]	
	(iii) Find the set of values of k for which the equation $f(x) = k$ has no solution.	[2]	
	The function $g: x \mapsto 4 - 3 \sin x$ is defined for the domain $\frac{1}{2}\pi \le x \le A$.		
	(iv) State the largest value of A for which g has an inverse.	[1]	
	(v) For this value of A , find the value of $g^{-1}(3)$.	[2]	
May	/June 2010/13		
3	The function $f: x \mapsto a + b \cos x$ is defined for $0 \le x \le 2\pi$. Given that $f(0) = 10$ and that $f(\frac{2}{3}\pi) = 1$	1, find	
	(i) the values of a and b ,	[2]	
	(ii) the range of f,	[1]	
	(iii) the exact value of $f(\frac{5}{6}\pi)$.	[2]	
4	(i) Show that the equation $2 \sin x \tan x + 3 = 0$ can be expressed as $2 \cos^2 x - 3 \cos x - 2 = 0$.	[2]	
	(ii) Solve the equation $2 \sin x \tan x + 3 = 0$ for $0^{\circ} \le x \le 360^{\circ}$.	[3]	
Oct/Nov 2010/11			
4	(i) Prove the identity $\frac{\sin x \tan x}{1 - \cos x} = 1 + \frac{1}{\cos x}$.	[3]	
	(ii) Hence solve the equation $\frac{\sin x \tan x}{1 - \cos x} + 2 = 0$, for $0^{\circ} \le x \le 360^{\circ}$.	[3]	
7	A function f is defined by $f: x \mapsto 3 - 2 \tan(\frac{1}{2}x)$ for $0 \le x < \pi$.		
	(i) State the range of f.	[1]	
	(ii) State the exact value of $f(\frac{2}{3}\pi)$.	[1]	
	(iii) Sketch the graph of $y = f(x)$.	[2]	
	(iv) Obtain an expression, in terms of x, for $f^{-1}(x)$.	[3]	
Oct/Nov 2010/12			
2	Prove the identity		

$$\tan^2 x - \sin^2 x \equiv \tan^2 x \sin^2 x.$$
 [4]

[3]

Oct/Nov 2010/13

Solve the equation $15 \sin^2 x = 13 + \cos x$ for $0^{\circ} \le x \le 180^{\circ}$. 3 [4]

4 (i) Sketch the curve $y = 2 \sin x$ for $0 \le x \le 2\pi$. [1]

(ii) By adding a suitable straight line to your sketch, determine the number of real roots of the equation

$$2\pi\sin x = \pi - x.$$

State the equation of the straight line.