Q1.

1 The acute angle x radians is such that $\tan x = k$, where k is a positive constant. Express, in terms of k,

(i)
$$\tan(\pi - x)$$
, [1]

(ii)
$$\tan(\frac{1}{2}\pi - x)$$
, [1]

(iii)
$$\sin x$$
. [2]

Q2.

4 (i) Show that the equation $2 \sin x \tan x + 3 = 0$ can be expressed as $2 \cos^2 x - 3 \cos x - 2 = 0$. [2]

(ii) Solve the equation
$$2 \sin x \tan x + 3 = 0$$
 for $0^{\circ} \le x \le 360^{\circ}$. [3]

Q3.

5 (i) Show that the equation $2 \tan^2 \theta \sin^2 \theta = 1$ can be written in the form

$$2\sin^4\theta + \sin^2\theta - 1 = 0.$$
 [2]

(ii) Hence solve the equation
$$2 \tan^2 \theta \sin^2 \theta = 1$$
 for $0^\circ \le \theta \le 360^\circ$. [4]

Q4.

8 (i) Prove the identity $\left(\frac{1}{\sin \theta} - \frac{1}{\tan \theta}\right)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$. [3]

(ii) Hence solve the equation
$$\left(\frac{1}{\sin \theta} - \frac{1}{\tan \theta}\right)^2 = \frac{2}{5}$$
, for $0^\circ \le \theta \le 360^\circ$. [4]

Q5.

1 Solve the equation
$$\sin 2x = 2\cos 2x$$
, for $0^{\circ} \le x \le 180^{\circ}$. [4]

Q6.

1 (i) Prove the identity $\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$. [3]

(ii) Use this result to explain why $\tan \theta > \sin \theta$ for $0^{\circ} < \theta < 90^{\circ}$. [1]

Q7.

4 (i) Solve the equation $\sin 2x + 3\cos 2x = 0$ for $0^{\circ} \le x \le 360^{\circ}$. [5]

(ii) How many solutions has the equation $\sin 2x + 3\cos 2x = 0$ for $0^{\circ} \le x \le 1080^{\circ}$? [1]

Q8.

5 (i) Show that $\frac{\sin \theta}{\sin \theta + \cos \theta} + \frac{\cos \theta}{\sin \theta - \cos \theta} = \frac{1}{\sin^2 \theta - \cos^2 \theta}$. [3]

(ii) Hence solve the equation $\frac{\sin \theta}{\sin \theta + \cos \theta} + \frac{\cos \theta}{\sin \theta - \cos \theta} = 3$, for $0^{\circ} \le \theta \le 360^{\circ}$. [4]

Q9.

3 (i) Express the equation $2\cos^2\theta = \tan^2\theta$ as a quadratic equation in $\cos^2\theta$. [2]

(ii) Solve the equation $2\cos^2\theta = \tan^2\theta$ for $0 \le \theta \le \pi$, giving solutions in terms of π . [3]

Q10.

5 (i) Sketch, on the same diagram, the curves $y = \sin 2x$ and $y = \cos x - 1$ for $0 \le x \le 2\pi$. [4]

(ii) Hence state the number of solutions, in the interval $0 \le x \le 2\pi$, of the equations

(a)
$$2\sin 2x + 1 = 0$$
, [1]

(b)
$$\sin 2x - \cos x + 1 = 0.$$
 [1]

Q11.

1 Solve the equation $3\tan(2x+15^\circ) = 4$ for $0^\circ \le x \le 180^\circ$. [4]

Q12.

The equation of a curve is $y = 3\cos 2x$. The equation of a line is $x + 2y = \pi$. On the same diagram, sketch the curve and the line for $0 \le x \le \pi$.

Q13.

4 (i) Prove the identity
$$\frac{\sin x \tan x}{1 - \cos x} = 1 + \frac{1}{\cos x}$$
. [3]

(ii) Hence solve the equation
$$\frac{\sin x \tan x}{1 - \cos x} + 2 = 0$$
, for $0^{\circ} \le x \le 360^{\circ}$. [3]

Q14.

7 A function f is defined by $f: x \mapsto 3 - 2 \tan(\frac{1}{2}x)$ for $0 \le x < \pi$.

(ii) State the exact value of
$$f(\frac{2}{3}\pi)$$
. [1]

(iii) Sketch the graph of
$$y = f(x)$$
. [2]

(iv) Obtain an expression, in terms of x, for $f^{-1}(x)$. [3]

Q15.

3 Solve the equation $15 \sin^2 x = 13 + \cos x$ for $0^\circ \le x \le 180^\circ$. [4]

Q16.

4 (i) Sketch the curve $y = 2 \sin x$ for $0 \le x \le 2\pi$. [1]

(ii) By adding a suitable straight line to your sketch, determine the number of real roots of the equation

$$2\pi \sin x = \pi - x$$
.

State the equation of the straight line. [3]

Q17.

- 3 (i) Sketch, on a single diagram, the graphs of $y = \cos 2\theta$ and $y = \frac{1}{2}$ for $0 \le \theta \le 2\pi$. [3]
 - (ii) Write down the number of roots of the equation $2\cos 2\theta 1 = 0$ in the interval $0 \le \theta \le 2\pi$. [1]
 - (iii) Deduce the number of roots of the equation $2\cos 2\theta 1 = 0$ in the interval $10\pi \le \theta \le 20\pi$. [1]

Q18.

5 (i) Given that

$$3\sin^2 x - 8\cos x - 7 = 0,$$

show that, for real values of x,

$$\cos x = -\frac{2}{3}.$$

(ii) Hence solve the equation

for $0^{\circ} \le \theta \le 180^{\circ}$.

$$3\sin^2(\theta + 70^\circ) - 8\cos(\theta + 70^\circ) - 7 = 0$$
[4]

Q19.

7 (i) Solve the equation $2\cos^2\theta = 3\sin\theta$, for $0^\circ \le \theta \le 360^\circ$. [4]

(ii) The smallest positive solution of the equation $2\cos^2(n\theta) = 3\sin(n\theta)$, where *n* is a positive integer, is 10°. State the value of *n* and hence find the largest solution of this equation in the interval 0° $\leq \theta \leq 360$ °. [3]

Q20.

3 Solve the equation $7\cos x + 5 = 2\sin^2 x$, for $0^\circ \le x \le 360^\circ$. [4]

Q21.

4 (i) Solve the equation $4\sin^2 x + 8\cos x - 7 = 0$ for $0^{\circ} \le x \le 360^{\circ}$. [4]

(ii) Hence find the solution of the equation $4\sin^2\left(\frac{1}{2}\theta\right) + 8\cos\left(\frac{1}{2}\theta\right) - 7 = 0$ for $0^\circ \le \theta \le 360^\circ$. [2]

Q22.

4 (i) Solve the equation $4\sin^2 x + 8\cos x - 7 = 0$ for $0^{\circ} \le x \le 360^{\circ}$. [4]

(ii) Hence find the solution of the equation $4\sin^2\left(\frac{1}{2}\theta\right) + 8\cos\left(\frac{1}{2}\theta\right) - 7 = 0$ for $0^\circ \le \theta \le 360^\circ$. [2]