Q1.

•	Use logarit	thms to linearise an equation	M1	
	Obtain $\frac{x}{-}$	$=\frac{\ln 5}{\ln 2}$ or equivalent	A1	
	y Obtain ans		A1	3
	Obtain and	7.01	Α.	Ü
Q2.				
2		a linear equation, e.g. <i>x</i> log 3 = log 8 final answer 1.89	B1 B1	2
		for addition or subtraction of logarithms	M1 M1	
	Obtain a	answer $z = \frac{y+2}{y^2}$	A1	3
Q3.				
2	(i)	State or imply $y \ln 3 = (x+2) \ln 4$ State that this is of the form $ay = bx + c$ and thus a straight line, or	B1	
		equivalent	B1	
		State gradient is $\frac{\ln 4}{\ln 3}$, or equivalent (allow 1.26)	B1	[3]
	(ii)	Substitute $y = 2x$ and obtain a linear equation in x Solve for x Obtain answer 3.42	M1* M1(dep*) A1	[3]
Q4.				
2		the logarithm of a product, a quotient or a power $= \ln 2 + x \ln 3$, or equivalent $= \ln x + x \ln 3$ or equivalent	M1* A1 M1 (dep*) A1	[4]
Q5.	•			

Q6.

Use logarithms to linearise an equation Obtain $\frac{x}{y} = \frac{\ln 2.5}{\ln 1.25}$, or equivalent

Obtain answer 4.11

M1 A1 A1√

[3]

5 (i) State or imply $2^{-x} = \frac{1}{y}$, or $2^{-x} = y^{-1}$ Substitute and obtain a 3-term quadratic in yObtain the given answer correctly

(ii) Solve the given quadratic and carry out correct method for solving an equation of the form $2^x = a$, where a > 0Obtain answer x = 1.58 or 1.585Obtain answer x = 0B1

M1

A1

B1

[3]

Q7.

1 State or imply $y \log 2.8 = x \log 13$ B1

Rearrange into form $y = \frac{\log 13}{\log 2.8}x$ or equivalent B1

Obtain answer k = 2.49 B1 [3]

Q8.

3 State or imply that $\ln y = \ln K + m \ln x$ B1 Equate intercept on axis for $\ln y$ to $\ln K$ M1 Obtain 7.39 for K A1 Attempt calculation of gradient of line M1 Obtain 1.37 for m A1 [5]

Q9.

1 Attempt use of power law for logarithms $M1^*$ Obtain $x \log 3 = x \log 2 + 2 \log 2$ or equivalent Attempt solution for x of linear equation M1 dep*
Obtain 3.42Al [4]

Q10.

2 State or imply that $\ln y = \ln A + x \ln b$ B1 Equate intercept on y-axis to $\ln A$ M1 Obtain $\ln A = 2.14$ and hence A = 8.5 A1 Attempt gradient of line or equivalent (or use of correct substitution) M1 Obtain $0.47 = \ln b$ or equivalent and hence b = 1.6 A1 [5]

Q11.

State or imply equation in the form $(5^x)^2 + 5^x - 12 = 0$ **B**1 Attempt solution of quadratic equation for 5x M1Obtain $5^x = 3$ only A1 [3] (ii) Use logarithms to solve equation of the form $5^x = k$ where k > 0M1Obtain 0.683 [2] A1 Q12. Use $2 \ln x = \ln(x^2)$ M1Use law for addition or subtraction of logarithms M1Obtain correct quadratic equation in x A1 Make reasonable solution attempt at a 3-term quadratic DM₁ (dependent on previous M marks) State $x = \frac{3}{5}$ and no other solutions A1 [5] Q13. State or imply $(y+1) \log 5 = 3x \log 2$ M1 State that this is of the form ay = bx + c and thus a straight line, or equivalent A1 [2] (ii) State gradient is $\frac{3 \ln 2}{\ln 5}$, or equivalent, e.g. $3 \log_5 2$ B1 State (0, -1)B₁ [2] Q14. (i) State or imply that $9^x = y^2$ (ii) Carry out recognisable solution method for quadratic in yB1 1 M1 Obtain $y = \frac{1}{2}$ and y = 3 from $2y^2 - 7y + 3 = 0$ Al Use log method to solve an equation of the form $3^x = k$ M1 Obtain answer $x = -\frac{\ln 2}{\ln 3}$, or exact equivalent $\{ t_0 \text{ ANY base } \}$ 0 Al' State exact answer x = 1 (no penalty if logs used) BI Q15. 2 B₁ State or imply at any stage $\ln y = \ln k - x \ln a$ Equate estimate of $\ln y$ - intercept to $\ln k$ M1Obtain value for k in the range 9.97 ± 0.51 A1 Calculate gradient of the line of data points M1Obtain value for a in the range 2.12 ± 0.11 A1

Q16.

[5]

2	Use logarithms to obtain an equation in ln x	M1	
	Obtain ln $x = \frac{\ln 11}{(3.9 - 3.2)}$, or equivalent	A1	
	Obtain answer <i>x</i> = 31 (accept 30.7, 30.74)	A1	3
Q17.			
2	 (i) State or imply that 4^x = y² (=2^{2x}) (ii) Carry out recognizable solution method for a quadranic equation in y. Obtain y = 3 and y = ¹/₃ from 3y² - 10y + 3 = 0 	BI M1	
	Use logarithmic method to solve an equation of the form $2^F = k$, where $k \ge 0$ State answer 1.58 State answer -1.58	M1 (A1 √ if ± 1.59) A1	Γ.,
Q18.			
	State or imply $\ln y = \ln A - x \ln b$ State $\ln A = 1.3$ Obtain $A = 3.67$ Form a numerical expression for the gradient of the line Obtain $b = 1.28$	B1 B1 B1 M1 A1	[5]
Q19.			
2	Use $\ln x^2 = 2\ln x$ Obtain $3 - x^2 = x^2$, or equivalent Solve for x Obtain answer $x - 1.22$, having rejected $x = -1.22$	B1 B1 M1 A1	[4]
Q20.			
2	State or imply $2 \ln x = \ln(x^2)$ Use law for the logarithm of a quotient or a product Remove logarithms and obtain $yx^2 = y + 5$, or equivalent Obtain answer $y = \frac{5}{x^2 - 1}$	B1 M1 A1	
Q21.	•		
2	Use law for the logarithm of a product, a quotient or a power Obtain $x \log 5 = (2x+1)\log 2$, or equivalent Solve for x , via correct manipulative technique(s) Obtain answer $x = 3.11$. Allow $x \in [3.10, 3.11]$	M1* A1 M1(dep* A1	l)

Q22.

5	State or imply $\ln y = \ln A + x \ln b$	B 1	
	Form a numerical expression for the gradient of the line	M1	
	Obtain $b = 1.65$	A1	
	Use gradient and one point correctly to find In A	M1	
	Obtain $\ln A = 0.1$	A1	
	Obtain $A = 1.11$	A1 [6	5]

Q23.

4	Carry out recognizable solution method for quadratic in 3 ^x	M1	
	Obtain $3^x = 5$ and $3^x = 2$	A1	
	Use logarithmic method to solve an equation of the form $3^x = k$, where $k > 0$	M1	
	State answer 1.46	A1	
	State answer 0.631	A1	[5]

Q24.

2 Use law for the logarithm of a product, a quotient or a power Obtain $(x+1)\log 4 = (2x-3)\log 5$, or equivalent A1

Solve for x M1(dep*)

Obtain answer x = 3.39 A1 [4]

Q25.

3	Use $2 \ln(x+3) = \ln(x+3)^2$	M1	
	Use law for addition or subtraction of logarithms	M1	
	Obtain correct quadratic expression in x	A1	
	Make reasonable solution attempt at a 3-term quadratic	M1	
	State $x = 9$ and no other solutions (condone $x = -1$ not deleted)	A1	[5]

Q26.

2 Use law for the logarithm of a product, a quotient or a power Obtain $x \log 5 = (2x - 1) \log 3$ or equivalent A1

Solve for x M1(dep*)

Obtain answer x = 1.87 A1 [4]

Q27.

5	State or imply $\ln y = \ln A - x \ln b$ Form a numerical expression for the gradient of the line Obtain $b = 1.82$ Use gradient and one point correctly to find $\ln A$ Obtain $\ln A = 3.5$ Obtain $\ln A = 3.5$	B1 M1 A1 M1 A1 A1	[6]
Q28	•		
5	State or imply $\ln y = \ln K + px \ln 2$ Obtain at least one of 3.81 – 1.87	B1	
	1.87 = $\ln K + 1.35 p \ln 2$, 3.81 = $\ln K + 3.35 p \ln 2$, $p \ln 2 = \frac{3.81 - 1.87}{3.35 - 1.35}$ or equivalents Solve equation(s) to find one constant, dependent on previous B1 Obtain $p = 1.40$ Substitute to attempt value of K Obtain $\ln K = 0.5605$ and hence $K = 1.75$	B1 M1 A1 DM1 A1	[6]
Q29			
2	State or imply $\ln y = \ln a + x \ln b$ Equate $\ln b$ to numerical gradient of line Obtain $b = 1.85$ Substitute to find value of a Obtain $a = 3.45$	B1 M1 A1 M1 A1	[5]
Q30			
4	(a) Use power law to produce $\ln(x-4)^2$ Apply logarithm laws to produce equation without logarithms Obtain $(x-4)^2 = 2x$ or equivalent Solve 3-term quadratic equation Obtain (finally) $x = 8$ only	B1 M1 A1 DM1 A1	
	(b) Apply logarithms and use power law (once) Obtain $\frac{\ln 10^{10}}{\ln 1.4}$ or equivalent as part of inequality or equation	M1 A1	
	Conclude with single integer 69	A1	

P3 (variant1 and 3)

Q1.

3 (i) EITHER: State or imply $n \ln x + \ln y = \ln C$ B1Substitute x- and y-values and solve for n M1 Obtain n = 1.50A1 Solve for C M1Obtain C = 6.00A1 OR: Obtain two correct equations by substituting x- and y-values in $x^n y = C$ B₁ M1Obtain n = 1.50A1 Solve for C M1Obtain C = 6.00A1 [5] (ii) State that the graph of $\ln y$ against $\ln x$ has equation $n \ln x + \ln y = \ln C$ which is linear in $\ln y$ and $\ln x$, or has equation of the form $nX + Y = \ln C$, where $X = \ln x$ and $Y = \ln y$, and is thus a straight line B₁ [1] **Q2**. **B**1 (i) State or imply $3 \ln y = \ln A + 2x$ at any stage State gradient is $\frac{2}{3}$, or equivalent B1[2] (ii) Substitute x = 0, $\ln y = 0.5$ and solve for A M1Obtain A = 4.48A1 [2] Q3. M1* Use law for the logarithm of a product, power or quotient Obtain a correct linear equation, e.g. $(2x-1)\ln 5 = \ln 2 + x \ln 3$ A1 Solve a linear equation for x M1(dep*) Obtain answer x = 1.09A1 [SR: Reduce equation to the form $a^x = b$ M1*, obtain $\left(\frac{25}{3}\right)^x = 10$ Al, use correct method to calculate value of x M1(dep*), obtain answer 1.09 A1.] Q4. 2 Use law of the logarithm of a power and a product or quotient and remove logarithms M1 Obtain a correct equation in any form, e.g. $\frac{2x+3}{x^2} = 3$ A1 Solve 3-term quadratic obtaining at least one root M1

Q5.

Obtain final answer 1.39 only

A1

[4]

Use law for the logarithm of a product, quotient or power

Use $\ln e = 1$ or $\exp(1) = 3$ Obtain correct equation free of logarithms in any form, e.g. $\frac{y+1}{y} = ex^3$ Rearrange as $y = (ex^3 - 1)^{-1}$, or equivalent

A1 [4]

Q6.

EITHER: Use laws of indices correctly and solve a linear equation for 3^x, or for 3^{-x} M1Obtain 3^x , or 3^{-x} in any correct form, e.g. $3^x = \frac{3^2}{(3^2 - 1)}$ A1 Use correct method for solving $3^{\pm x} = a$ for x, where a > 0M1 Obtain answer x = 0.107A1 State an appropriate iterative formula, e.g. $x_{n+1} = \frac{\ln(3^{x_n} + 9)}{\ln 3} - 2$ OR: B₁ Use the formula correctly at least once M1Obtain answer x = 0.107A1 Show that the equation has no other root but 0.107 [4] A1 [For the solution 0.107 with no relevant working, award B1 and a further B1 if 0.107 is shown to be the only root.]

Q7.

Use law for the logarithm of a power, a quotient, or a product correctly at least once Use $\ln e = 1$ or $e = \exp(1)$ M1

Obtain a correct equation free of logarithms, e.g. $1 + x^2 = ex^2$ A1

Solve and obtain answer x = 0.763 only A1

[For the solution x = 0.763 with no relevant working give B1, and a further B1 if 0.763 is shown to be the only root.]

[Treat the use of logarithms to base 10 with answer 0.333 only, as a misread.]

[SR: Allow iteration, giving B1 for an appropriate formula, e.g. $x_{n+1} = \exp((\ln(1 + x_n^2) - 1)/2)$, M1 for using it correctly once, A1 for 0.763, and A1 for showing the equation has no other root but 0.763.]

Q8.

1 Rearrange as $e^{2x} - e^x - 6 = 0$, or $u^2 - u - 6 = 0$, or equivalent

Solve a 3-term quadratic for e^x or for uObtain simplified solution $e^x = 3$ or u = 3Obtain final answer x = 1.10 and no other

B1

M1

A1

[4]

Q9.

EITHER Use laws of indices correctly and solve for 5^x or for 5^{-x} or for 5^{x-1} M1

> Obtain 5^x or for 5^{-x} or for 5^{x-1} in any correct form, e.g. $5^x =$ A1

> Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, where $a \ge 0$ M1

> Obtain answer x = 1.14A₁

ORUse an appropriate iterative formula, e.g. x_{n+1} = , correctly, at least onceM1 Obtain answer 1.14 Show sufficient iterations to at least 3 d.p. to justify 1.14 to 2 d.p., or show there is a sign change in the interval (1.135, 1.145) A1 Show there is no other root A1 [4] [For the solution x = 1.14 with no relevant working give B1, and a further B1 if

1.14 is shown to be the only solution.]

Q10.

State or imply 1ne=1 B₁ Apply at least one logarithm law for product or quotient correctly M1(or exponential equivalent)

Obtain x+5=ex or equivalent and hence $\frac{5}{e-1}$ A1 [3]

Q11.

EITHER: State or imply non-modular equation $2^2(3^x-1)^2=(3^x)^2$, or pair of equations

 $2(3^x-1)=\pm 3^x$ M1

Obtain $3^x = 2$ and $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$) A1

OR: B₁

Obtain $3^x = 2$ by solving an equation or by inspection Obtain $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$) by solving an equation or by inspection B1

Use correct method for solving an equation of the form $3^x = a$ (or $3^{x+1} = a$), where a > 0M1Obtain final answers 0.631 and -0.369 A1 [4]

Q12.

Apply at least one logarithm property correctly *M1

Obtain $\frac{(x+4)^2}{x} = x + a$ or equivalent without logarithm involved A1

Rearrange to express x in terms of a M1 d*M

Obtain $\frac{16}{a-8}$ or equivalent A1 [4]

Q13.

6 (i) Use law for the logarithm for a product or quotient or exponentiation AND for a power

Obtain $(4x-5)^2(x+1) = 27$

Obtain given equation correctly $16x^3 - 24x^2 - 15x - 2 = 0$

A1 [3]

(ii) Obtain x = 2 is root or (x - 2) is a factor, or likewise with $x = -\frac{1}{4}$

Divide by (x-2) to reach a quotient of the form $16x^2 + kx$ Obtain quotient $16x^2 + 8x + 1$

M1 A1

B1

M1

B1

Obtain $(x-2)(4x+1)^2$ or (x-2), (4x+1), (4x+1)

A1

(iii) State x = 2 only

A1 [1]

[4]

Q14.

1 Use law of the logarithm of a quotient or product or $2 = \log_{10} 100$ Remove logarithms and obtain x + 9 = 100x, or equivalent M1

A1 A1

3

Obtain answer $x = \frac{1}{11}$

__

Q15.

1 Use law of the logarithm of a power Obtain a correct linear equation in any form, e.g. $x = (x-2) \ln 3$ M1 A1

Obtain answer x = 22.281

A1 [3]