P3 (variant1 and 3)

Q1.

9 (i) Express
$$\frac{4+5x-x^2}{(1-2x)(2+x)^2}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{4+5x-x^2}{(1-2x)(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 . [5]

Q2.

1 Expand $\sqrt[3]{(1-6x)}$ in ascending powers of x up to and including the term in x^3 , simplifying the coefficients. [4]

Q3.

- 2 (i) Expand $\frac{1}{\sqrt{1-4x}}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [3]
 - (ii) Hence find the coefficient of x^2 in the expansion of $\frac{1+2x}{\sqrt{4-16x}}$. [2]

Q4.

1 Expand $\frac{1}{\sqrt{(4+3x)}}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [4]

Q5.

Expand $\frac{1+3x}{\sqrt{(1+2x)}}$ in ascending powers of x up to and including the term in x^2 , simplifying the coefficients. [4]

Q6.

3 Express
$$\frac{7x^2 - 3x + 2}{x(x^2 + 1)}$$
 in partial fractions. [5]

Q7.

8 (i) Express
$$\frac{5x+3}{(x+1)^2(3x+2)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{5x+3}{(x+1)^2(3x+2)}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [5]

Q8.

8 Let
$$f(x) = \frac{3x}{(1+x)(1+2x^2)}$$
.

- (i) Express f(x) in partial fractions. [5]
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^3 .

Q9.

Expand $(1 + 2x)^{-3}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients.

Q10.

1 Expand $\frac{16}{(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [4]

Q11.

When $(1 + ax)^{-2}$, where a is a positive constant, is expanded in ascending powers of x, the coefficients of x and x^3 are equal.

(ii) When a has this value, obtain the expansion up to and including the term in x², simplifying the coefficients.
[3]

Q12.

9 (i) Express
$$\frac{9-7x+8x^2}{(3-x)(1+x^2)}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{9-7x+8x^2}{(3-x)(1+x^2)}$ in ascending powers of x, up to and including the term in x^3 . [5]

Q13.

7 Let
$$f(x) = \frac{2x^2 - 7x - 1}{(x - 2)(x^2 + 3)}$$
.

- (i) Express f(x) in partial fractions. [5]
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 . [5]

Q14.

8 (i) Express
$$\frac{7x^2 + 8}{(1+x)^2(2-3x)}$$
 in partial fractions. [5]

(ii) Hence expand $\frac{7x^2 + 8}{(1+x)^2(2-3x)}$ in ascending powers of x up to and including the term in x^2 , simplifying the coefficients. [5]

Q15.

9 (i) Express
$$\frac{4+12x+x^2}{(3-x)(1+2x)^2}$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of $\frac{4+12x+x^2}{(3-x)(1+2x)^2}$ in ascending powers of x, up to and including the term in x^2 . [5]

Q16.

Expand $(1+3x)^{-\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]

Q17.

9 Let
$$f(x) = \frac{x^2 - 8x + 9}{(1 - x)(2 - x)^2}$$
.

(i) Express
$$f(x)$$
 in partial fractions. [5]

(ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 .