Q1.

2	(i) <i>El</i>	THER: Expand RHS and obtain at least one equation for a Obtain $a^2 = 9$ and $2a = 6$, or equivalent	M1 A1	
		State answer a = 3 only	A1	
OR:		Attempt division by $x^2 + ax + 1$ or $x^2 - ax - 1$, and obtain an equation in Obtain $a^2 = 9$ and either $a^3 - 1$ la + 6 = 0 or $a^3 - 7a - 6 = 0$, or equivaler State answer $a = 3$ only	n a M1 nt A1 A1	
		[Special case: the answer $a=3$, obtained by trial and error, or by inspection, or with no working earns B2.]	[3]	
	(ii)	Substitute for a and attempt to find zeroes of one of the quadratic fact	torsM1	
		Obtain one correct answer	A1	
		State all four solutions $\frac{1}{2}(-3 \pm \sqrt{5})$ and $\frac{1}{2}(3 \pm \sqrt{13})$, or equivalent	A1	
			[3]	
Q2.				
3	(i)	Substitute x = 3 and equate to zero	M1	
		Obtain answer $\alpha = -1$	A1	2
	(ii)	At any stage, state that $x = 3$ is a solution	B1	
		EITHER: Attempt division by (x-3) reaching a partial quotient of 2x ² + kx	M1	
		Obtain quadratic factor 2x ² + 5x +2	A1	
		Obtain solutions $x = -2$ and $x = -\frac{1}{2}$	A1	
		OR: Obtain solution $x = -2$ by trial and error Obtain solution $x = -\frac{1}{2}$ similarly	B1 B2	4
		[If an attempt at the quadratic factor is made by inspection, the M1 is earned if it runknown factor of $2x^2 + bx + c$ and an equation in b and/or c.]		an
Q3.				
4	/:\	Substitute $x = -1$ and equate to zero obtaining e.g. $(-1)^3 - (-1)^2 + a(-1) + b = 0$	D1	
4	(1)	Substitute $x = -1$ and equate to 2e10 obtaining e.g. $(-1) = (-1) + a(-1) + b = 0$ Substitute $x = 2$ and equate to 12	M1	
		Obtain a correct 3-term equation	A1	
		Solve a relevant pair of equations for a or b	M1	
		Obtain $a = 2$ and $b = 4$	A1	5
	(ii)	Attempt division by $x+1$ reaching a partial quotient of x^2+kx , or similar stage by inspection	M1	
		Obtain quadratic factor $x^2 - 2x = 4$	A1	2
		[Ignore failure to repeat that $x + 1$ is a factor]		
Q4.				

1	(i) Sub	stitute e = 1	or $x = -2$ and equate to zero	MI	
			equition, $e \cdot g \cdot a = b - 5 = 0$	Al	
			correct equation, e.g. $-8a + 4b + 4 = 0$	AL	
	Sol	ve a relevant	pair of equations for n or for h	MI	
	Obs	a = 2 un	db = 3	AL	.5
	(ii) Sul	beginne for a	and h and either divide by $(x+1)(x+2)$ or attempt third factor by inspection	MI Al	6
	Obtain answer $2x + 1$				2
Q5.					
4	(i)	Subs	stitute $x = 2$, equate to zero, and state a correct equation, e.g.		
				B1	
		Subs	stitute $x = -2$ and equate to -20	M1	
				A1	
				M1	
				A1	[5]
	(ii)	Atte	empt division by $x^2 - 4$ reaching a partial quotient of $2x - 3$, or a		
		simi	lar stage by inspection	B1	
				$B1\sqrt{+B1}\sqrt{-B1}$	[3]
Q6.	Substit	tute v = _1	equate to zero and obtain a correct equation in any form	B1	
4			and equate to 5	M1	
			equation in any form	A1	
				M1	
			pair of equations for a or for b		re
	Obtain	a = 2 and	b = -3	A1	[5]
Q7.					
6	(i)		ex = 2, equate to zero and state a correct equation, e.g. $8 + 4a + 2b + 6$		
			ex = 1 and equate to 4	M1	
			correct equation. e.g. $1 + a + b + 6 = 4$	A1	
			a or for b	M1	
		Obtain a	= -4 and b = 1	A1	[5]
	(ii)	EITHER:	Attempt division by $x-2$ reaching a partial quotient of $x^2 + kx$	M1	
			Obtain remainder quadratic factor $x^2 - 2x - 3$	A1	
			State linear factors $(x-3)$ and $(x+1)$	A1	
		OR:	Obtain linear factor $(x + 1)$ by inspection	B1	
			Obtain factor $(x-3)$ similarly	B2	[3]

Q8.

```
(i) Commence division by x^2 + x - 1 obtaining quotient of the form x + k
                                                                                                        M1
            Obtain quotient x + 2
                                                                                                        A1
            Obtain remainder 3x + 4
                                                                                                        A1
            Identify the quotient and remainder correctly
                                                                                                       A1√
                                                                                                               [4]
       (ii) Substitute x = -1 and evaluate expression
                                                                                                        M1
            Obtain answer 0
                                                                                                        A1
                                                                                                               [2]
Q9.
  7
            (i) Substitute x = 3 and equate to 30
                                                                                                       M1
                 Substitute x = -1 and equate to 18
                                                                                                       M1
                 Obtain a correct equation in any form
                                                                                                        A1
                 Solve a relevant pair of equations for a or for b
                                                                                                       M1
                 Obtain a = 1 and b = -13
                                                                                                              [5]
                                                                                                        A1
            (ii) Either show that f(2) = 0 or divide by (x - 2), obtaining a remainder of zero
                                                                                                        B1
                 Obtain quadratic factor 2x^2 + 5x - 3
                                                                                                        B<sub>1</sub>
                 Obtain linear factor 2x - 1
                                                                                                        B1
                 Obtain linear factor x + 3
                                                                                                        B<sub>1</sub>
                 [Condone omission of repetition that x-2 is a factor.]
                 [If linear factors 2x - 1, x + 3 obtained by remainder theorem or inspection, award B2 + B1.] [4]
Q10.
             Substitute -2 and equate to zero or divide by x + 2 and equate remainder to zero
                                                                                                         M1
             Obtain a = 8
                                                                                                          A1
                                                                                                                [2]
        (ii) Attempt to find quotient by division or inspection or use of identity
                                                                                                         M1
             Obtain at least 3x^2 + 2x
                                                                                                          A1
             Obtain 3x^2 + 2x + 4 with no errors seen
                                                                                                          A1
                                                                                                                [3]
Q11.
            Substitute x = -2 and equate to zero
                                                                                                        M1
            Substitute x = -1 and equate to 24
                                                                                                         M1
            Obtain 4a - 2b = 38 and a - b = 20 or equivalents
                                                                                                         A1
            Attempt solution of two linear simultaneous equations (dependent on M1 M1)
                                                                                                         M1
            Obtain a = -1 and b = -21
                                                                                                         A1
                                                                                                               [5]
       (ii) Attempt to find quadratic factor by division, inspection or use of identity
                                                                                                        M1
            Obtain 6x^2 - 13x + 5
                                                                                                        A1V
            Conclude (x+2)(2x-1)(3x-5)
                                                                                                         A1
                                                                                                               [3]
```

Q12.

- 3 (i) Substitute 2 and equate to zero or divide and equate remainder to zero M1Obtain a = 2 A1 [2]
 - (ii) (a) Attempt to find quadratic factor by division, inspection or identity M1Obtain $2x^2 + x 3$ Conclude (x 2)(2x + 3)(x 1)A1 [3]
 - (b) Attempt substitution of -1 or attempt complete division by x + 1 M1
 Obtain 6 A1 [2]

Q13.

- 3 (i) Attempt division, or equivalent, at least as far as quotient 2x + k M1
 Obtain quotient 2x 3 A1
 Complete process to confirm remainder is 4 A1 [3]
 - (ii) State or imply $(4x^2 + 4x 3)$ is a factor B1 Obtain (2x - 3)(2x - 1)(2x + 3) B1 [2]

Q14.

4 (i) Substitute $x = -\frac{3}{2}$, equate to zero

M1

Substitute x = -1 and equate to 8

Obtain a correct equation in any form

Solve a relevant pair of equations for a or for bObtain a = 2 and b = -6M1

Obtain a = 2 and b = -6A1 [5]

© Cambridge International Examinations 2013

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL - May/June 2013	9709	21

(ii) Attempt either division by 2x + 3 and reach a partial quotient of $x^2 + kx$, use of an identity or observation M1

Obtain quotient $x^2 - 4x + 3$

Obtain linear factors x - 1 and x - 3

[Condone omission of repetition that 2x + 3 is a factor.]

[If linear factors x - 1, x - 3 obtained by remainder theorem or inspection, award B2 + B1.]

[3]

Q15.

3	(i)	Substitute $x = -1$ and equate to zero Obtain answer $a = 7$	M1 A1	[2]
	(ii)	Substitute $x = -3$ and evaluate expression Obtain answer 18	M1 A1	[2]

Q16.

		M1
		A1
		M1
* *	21	Al . 5

Q17.

3 (i) <i>EITHER</i> :	Substitute -1 for x and equate to zero	M1
	Obtain answer <i>a</i> =6	A1
OR:	Carry out complete division and equate remainder to zero	M1
	Obtain answer a=6	A1
		[2]
(ii)	Substitute 6 for a and either show $f(x) = 0$ or divide by $(x - 2)$ obtaining a	
	remainder of zero	B1
EITHER:	State or imply $(x + 1)(x - 2) = x^2 - x - 2$	B1
	Attempt to find another quadratic factor by division or inspection	M1
	State factor $(x^2 + x - 3)$	A1
OR:	Obtain $x^3 + 2x^2 - 2x - 3$ after division by $x + 1$, or $x^3 - x^2 - 5x + 6$	
	after division by $x - 2$	B1
	Attempt to find a quadratic factor by further division by relevant divisor	
	or by inspection	M1
	State factor $(x^2 + x - 3)$	A1
		[4]

Q18.

State or obtain $16 - 20 + 2a + b = 0$	B1	
Substitute $x = -1$ and equate to -6	M1	
Obtain a 3-term equation in any correct form	A1	
Solve a relevant pair of equations, obtaining a or b	M1	
Obtain $a = 1$ and $b = 2$	A1	5
	Substitute $x = -1$ and equate to -6 Obtain a 3-term equation in any correct form Solve a relevant pair of equations, obtaining a or b	Substitute $x = -1$ and equate to -6 M1 Obtain a 3-term equation in any correct form A1 Solve a relevant pair of equations, obtaining a or b M1

Q19.

2	(i) Subminne x = 1 and evaluate expression Obtain answer 8	AL	2
	(ii) Commence division by x ² +x-1 and obtain quotient of the form x + k Obtain quotient x + 1	MI AI	
	Obtain remainder 2x + 4 Correctly identify the quotient and remainder	AT AT	
	Collectly teaminy the quotient and tenumber	81.14	
Q20.			
3 (i	Substitute $x = \frac{1}{2}$ and equate to zero	ML	
	Obtain answer $\mu = -3$	A1	2
(B	At any stage, state that $x = \frac{1}{2}$ is a solution	BI	
	EITHER: Attempt division by $2x-3$ reaching a partial quotient of $2x^2 + kx$	MI	
	Obtain quadratic factor $2x^2 + 3x + 1$	Al	
	Obtain solutions $x = -1$ and $x = -\frac{1}{2}$	Al	
	OR: Obtain solution $x = -1$ by trial and error or inspection	B1	
	Obtain solution $x = -\frac{1}{2}$ similarly	B2	4
	[If an attempt at the quadratic factor is made by inspection, the M1 is earned if it reaches an		
	unknown factor of $2x^2 + bx + c$ and an equation in b and/or c.)		
Q21.			
5 (i)	Substitute $x = -2$ and equate to zero	M1	F23
	Obtain answer $a = 3$	A1	[2]
(ii)	At any stage state that $x = -2$ is a solution	B1	
	EITHER: Attempt division by $x + 2$ and reach a partial quotient of $3x^2 + kx$	M1	
	Obtain quadratic factor $3x^2 + 2x - 1$	A1	
	Obtain solutions $x = -1$ and $x = \frac{1}{3}$	A1	
	OR: Obtain solution $x = -1$ by trial or inspection	B1	
	Obtain solution $x = \frac{1}{3}$ similarly	B2	[4]
	3		f -J
Q22.			
2 (2)	Substitute are 2 and amount applied a new and distillation at 2 and		
2 (i)	Substitute $x = -2$ and equate result to zero, or divide by $x + 2$ and equate constant remainder to zero	M1	

Q

equate constant remainder to zero Obtain answer a = -13A1 [2] (ii) Obtain quadratic factor $2x^2 - 5x - 3$ Obtain linear factor 2x + 1B1 B1 Obtain linear factor x - 3B1 [3] [Condone omission of repetition that x + 2 is a factor.] [If linear factors 2x + 1, x - 3 obtained by remainder theorem or inspection, award B2 + B1.]

Q23.

3		(i)	Substitute	$x = -\frac{1}{2}$ and equate to zero	M1	
			Obtain a	= -11	A1	[2]
		(ii)	EITHER:	Attempt division by $2x + 1$ reaching a partial quotient $2x^2 - 5x$	M1	
				Obtain quadratic factor $2x^2 - 5x - 3$ Obtain complete factorisation $(2x + 1)^2(x - 3)$	A1 A1 + A1	
			OR:	Obtain factor $(x-3)$ by inspection or factor theorem	B2	
				Attempt division by $(x-3)$ reaching a partial quotient $4x^2 + 4x$	M1	
				Obtain complete factorisation $(2x+1)^2(x-3)$	A1	[4]
Q2 4	I.					
5		(i)	Substitute	x = -1 or $x = 2$ and equate to zero	M1	
			Obtain a c	correct equation, e.g. $-a + b + 5 + 2 = 0$	A1	
				econd correct equation, e.g. $8a + 4b - 10 + 2 = 0$	A1	
			Solve for		M1	
			Obtain a=	= 3 and $b = -4$	A1	[5]
		(ii)	Substitute	for a and b and attempt division by $(x + 1)(x - 2)$ or attempt third factor	or by	
		()	inspection		M1	
				swer $3x - 1$	A 1	[2]
Q25	5.					
7	(i)	Subst	itute $x = 1$.	equate to zero and obtain a correct equation in any form	B1	
	(-)			and equate to 10	M1	
		Obtai	n a correct	equation in any form	A1	
				pair of equations for a or for b	M1	
		Obtai	a = -17 a	nd b = 12	A1	[5]
	(ii)	At an	y stage, sta	te that $x = 1$ is a solution	B1	
		EITH	ER: Atte	empt division by $x - 1$ and reach a partial quotient of $3x^2 + 5x$	M1	
				ain quotient $3x^2 + 5x - 12$	A1	
			Obt	ain solutions $x = -3$ and $x = \frac{4}{3}$	A1	
		OR:	Obt	ain solution $x = -3$ by trial and error or inspection	B1	
			Obt	ain solution $x = \frac{4}{3}$	B2	
		[If an	attempt at	the quadratic factor is made by inspection, the M1 is earned if it reach	es	
				or of $3x^2 + 5x + \lambda$ and an equation in λ]		[4]

Q26.

3 (i) Substitute x = -1 **OR** x = 2 correctly M1 Equate remainders to obtain correct equation 5 - a = 26 + 2a or equivalent Al Obtain a = -7A1 [3] (ii) Attempt division by x-1 and reach a partial quotient of $x^2 + kx$ M1Obtain quotient $x^2 + 5x - 2$ A1 **EITHER** Show remainder is zero **OR** substitute x = 1 to obtain zero **B**1 [3] Q27. (i) Substitute $x = \frac{1}{2}$ and equate to 10 M1Obtain answer a = -16A1 **Either** show that f(3) = 0 or divide by (x - 3) obtaining a remainder of zero B1[3] (ii) At any stage state that x = 3 is a solution B1Attempt division by (x-3) reaching a partial quotient of $4x^2 + kx$ M1Obtain quadratic factor $4x^2 - 4x - 3$ A1 Obtain solutions $x = \frac{3}{2}$ and $x = -\frac{1}{2}$ A1 S.C. M1A1√ if value of 'a' incorrect [4] Q28. (i) Substitute x = -2, equate to zero and obtain a correct equation in any form 7 B₁ Substitute x = -1 and equate to 12 M1Obtain a correct equation in any form A1 Solve a relevant pair of equations for a or b M1Obtain a = 2 and b = 6[5] A1 (ii) Attempt division by x + 2 and reach a partial quotient of $2x^2 - 7x$ M1Obtain quotient $2x^2 - 7x + 3$ A1 Obtain linear factors 2x - 1 and x - 3A1 [Condone omission of repetition that x + 2 is a factor.) [If linear factors 2x - 1, x - 3 obtained by remainder theorem or inspection, award B2 + B1.] S.C. M1A1 \sqrt{if} a, b not both correct [3] Q29. Substitute x = 1 or x = -2 and equate to zero M1Obtain a correct equation in any form with powers of x values calculated A1 Obtain a second correct equation in any form A1 Solve a relevant pair of equations for a or for b M1Obtain a = 3 and b = -5A1 [5] (ii) Attempt division by $x^2 + x - 2$, or equivalent, and reach a partial quotient of $x^2 + kx$ M1Obtain partial quotient $x^2 + 2x$ A1 Obtain $x^2 + 2x - 1$ with no errors seen A1 S.C. M1A1\(\sqrt{if 'a'}\) and/or 'b' incorrect [3]

Q30.

7	(i)	Substitute $x = -1$, equate to zero and obtain a correct equation in any form	B1	
		Substitute $x = 3$ and equate to 12	M1	
		Obtain a correct equation in any form	A1	
		Solve a relevant pair of equations for a or for b	M1	
		Obtain $a = -4$ and $b = 6$	A1	[5]
	(ii)	Attempt division by $x^2 - 2$ and reach a partial quotient of $2x - k$	M1	
		Obtain quotient $2x-4$	A1	
		Obtain remainder -2	A1	[3]

Q31.

3	(i)	Attempt division by $x^2 - 3x + 2$ or equivalent, and reach a partial quotient of $x^2 + kx$	M1	
		Obtain partial quotient $x^2 - x$	A1	
		Obtain $x^2 - x - 2$ with no errors seen	A1	[3]
	(ii)	Correct solution method for either quadratic e.g. factorisation	M1	
		One correct solution from solving quadratic or inspection	B1	
		All solutions $x = 2$, $x = 1$ and $x = -1$ given and no others	A1	[3]

Q32.

4	(i)	Substitute $x = 3$ and equate to $14 (9a + 3b + 35 = 14)$	M1
		Substitute $x = -2$ and equate to 24 $(4a - 2b = 24)$	M1
		Obtain a correct equation in any form	A1
		Solve a relevant pair of equations for a or for b	M1
		Obtain $a = 1$ and $b = -10$	A1 [5]

© Cambridge International Examinations 2013

	Page 5	Mark Scheme	Syllabus	Paper	
1	11-7	GCE AS LEVEL – October/November 2013	9709	21	
	(ii) Atte	empt division by $x^2 + 2x - 8$ and reach a partial quotient of	x-k	M1	
	Obt	ain quotient $x - 1$ with no errors seen (can be done by obser	vation)	A1	
	Cor	rect solution method for quadratic e.g. factorisation		M1	
	All	solutions $x = 1$, $x = 2$ and $x = -4$ given and no others CWO		A1	[4]

Q33.

4 (i) Substitute x = 3 or x = -2 and equate to zero M1 Obtain a correct equation in any form A1 Obtain a second correct equation in any form A1 Solve a relevant pair of equations for a or for b M1Obtain a = 4 and b = -3A1 [5] (ii) Attempt division by x + 2 (or x - 3) and obtain partial quotient of $ax^2 + kx$ M1 Obtain linear factors 4x + 1, x + 2 and x - 3A1 [If linear factor 4x + 1 obtained by remainder theorem or inspection, award B2] [If linear factor 4x + 1 obtained by division by $x^2 - x - 6$, award M1 A1] [2] Alternative Method: Attempt to form identity $(x^2 - x - 6)(rx + s) \equiv ax^3 + bx^3 - 25x - 6$ M1Attempt to equate like terms M1Leads to s = 1 B1, r = 4 A1, b = -3 A1, a = 4A1 Obtain linear factors 4x + 1, x + 2 and x - 3A1 Q34. (i) Divide at least as far as x term in quotient, use synthetic division correctly or make use of M1an identity Obtain at least $6x^2 - x$ A1 Obtain quotient $6x^2 - x - 2$ and confirm remainder is 7 (AG) A1 [3] (ii) State equation in form $(x^2 - 4)(6x^2 + kx - 2) = 0$, any constant k (may be implied) M1Obtain two of the roots -2, 2, $-\frac{1}{2}$, $\frac{2}{3}$ A1 Obtain remaining two roots and no others [3] A1 Q35. (i) Substitute -2 and equate to zero, or divide and equate remainder to zero M1Obtain a = 12[2] A1 (ii) Carry out division, or equivalent, at least as far as x^2 and x terms in quotient M1 Obtain $x^2 - 2x + 6$ A1 Calculate discriminant of a 3 term quadratic quotient (or equivalent) DM₁ Obtain -20 (or equivalent) A1 Conclude by referring to, or implying, root -2 and no root from quadratic factor A1 [5]

Q36.

(i) State -40 + 4a + b = 0 or equivalent **B**1 **B**1 State -135 + 9a + b = 0 or equivalent Solve a pair of linear simultaneous equations M1 Obtain a = 19 and b = -36A1 [4] (ii) Identify 5x - 6 as a factor B₁ State (x+2)(x+3)(5x-6)**B**1 State or imply $5^y = \frac{6}{5}$, following a positive value from factorisation B1√ Apply logarithms and use power law M1 Obtain 0.113 only A1 [5]

P3 (variant1 and 3)

Q1.

(i) Verify that -96 + 100 + 8 - 12 = 0B₁ Attempt to find quadratic factor by division by (x + 2), reaching a partial quotient $12x^2 + kx$, inspection or use of an identity M1 Obtain $12x^2 + x - 6$ A1 State (x+2)(4x+3)(3x-2)A1 [4] [The M1 can be earned if inspection has unknown factor $Ax^2 + Bx - 6$ and an equation in A and/or B or equation $12x^2 + Bx + C$ and an equation in B and/or C.] (ii) State $3^y = \frac{2}{3}$ and no other value **B**1 Use correct method for finding y from equation of form $3^y = k$, where k > 0M1Obtain -0.369 and no other value A1 [3]

Q2.

5 (i) Substitute $x = \frac{1}{2}$ and equate to zero, or divide, and obtain a correct equation, e.g.

$$\frac{1}{8}a + \frac{1}{4}b + \frac{5}{2} - 2 = 0$$
B1
Substitute $x = 2$ and equate result to 12, or divide and equate constant remainder to 12
M1

Obtain a correct equation, e.g. 8a + 4b + 10 - 2 = 12A1
Solve for a or for bM1
Obtain a = 2 and b = -3A1
[5]

[2]

(ii) Attempt division by 2x - 1 reaching a partial quotient $\frac{1}{2}\alpha x^2 + kx$ M1

Obtain quadratic factor $x^2 - x + 2$ A1

[The M1 is earned if inspection has an unknown factor $Ax^2 + Bx + 2$ and an equation in A and/or B, or an unknown factor of $\frac{1}{2}ax^2 + Bx + C$ and an equation in B and/or C.]

Q3.

3	(i)	 Substitute x = 2 and equate to zero, or divide by x - 2 and equate constant remainder to zero, or equivalent Obtain a = 4 			[2]
	(ii)	(a)	Find further (quadratic or linear) factor by division, inspection or factor theorem or equivalent Obtain $x^2 + 2x - 8$ or $x + 4$ State $(x-2)^2(x+4)$ or equivalent	M1 A1 A1	[3]
		(b)	State any two of the four (or six) roots State all roots ($\pm\sqrt{2}$, \pm 2i), provided two are purely imaginary	B1√ B1√	[2]
Q4.					
1	Carry out division or equivalent at least as far as two terms of quotient Obtain quotient $2x-4$ Obtain remainder 8			M1 A1 A1	[3]
Q5.					
5	(i)	Su	belitute $x = -\frac{1}{2}$, or divide by $(2x + 1)$, and obtain a correct equation, e.g. $a - 2b + 8 = 0$	B1	
		Su	beliate $x = \frac{1}{2}$ and equate to 1, or divide by $(2x - 1)$ and equate constant remainder to 1	M1	
		Ot So	parameter equation, e.g. $a + 2b + 12 = 0$ live for a or for b parameter $a = -10$ and $b = -1$	A1 M1 A1	[5]
	(ii)	Ob	vide by $2x^2 - 1$ and reach a quotient of the form $4x + k$ by tain quotient $4x - 5$ by tain remainder $3x - 2$	M1 A1 A1	[3]

Q6.

10	(i)	 Attempt to solve for m the equation p(-2) = 0 or equivalent Obtain m = 6 Alternative: Attempt p(z) ÷ (z + 2), equate a constant remainder to zero and solve for m. Obtain m = 6 		M1 A1	[2]
				M1 A1	
	(ii)	At Ob Us	that $z = -2$ tempt to find quadratic factor by inspection, division, identity, totain $z^2 + 4z + 16$ the correct method to solve a 3-term quadratic equation totain $-2 \pm 2\sqrt{3}i$ or equivalent	B1 M1 A1 M1	[5]
		Ob At Ob So	ate or imply that square roots of answers from part (ii)(a) needed beam $\pm i\sqrt{2}$ tempt to find square root of a further root in the form $x+iy$ or in polar form beam $a^2-b^2=-2$ and $ab=(\pm)\sqrt{3}$ following their answer to part (ii)(a) live for a and b beam $\pm (1+i\sqrt{3})$ and $\pm (1-i\sqrt{3})$	M1 A1 M1 A1√ M1 A1	[6]
Q7.					
3	(i)	EITHE OR:	CR: Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ Obtain quotient $x^2 + 4x + 3$ Equate remainder of form k to zero and solve for k , or equivalent Obtain answer k = 1 Substitute a complex zero of k - k + 1 in k in k and equate to zero	M1 A1 M1 A1 M1	
		equation	Obtain a correct equation in a in any unsimplified form Expand terms, use $i^2 = -1$ and solve for a Obtain answer $a = 1$ the first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + C$ and an on in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A and/or B . cond M1 is only earned if use of the equation $a = B - C$ is seen or implied.]	A1 M1 A1	[4]
	(ii)		nswer, e.g. $x = -3$ nswer, e.g. $x = -1$ and no others	B1 B1	[2]

Q8.

7	(i)	Substitute $x = \frac{1}{2}$ and equate to zero		
		or divide by $(2x-1)$, reach $\frac{a}{2}x^2 + kx +$ and equate remainder to zero		
		or by inspection reach $\frac{a}{2}x^2 + bx + c$ and an equation in b/c		
		or by inspection reach $Ax^2 + Bx + a$ and an equation in A/B	M1	
		Obtain $a = 2$	A1	
		Attempt to find quadratic factor by division or inspection or equivalent	M1	
		Obtain $(2x-1)(x^2+2)$	A1cwo	[4]
	(ii)	State or imply form $\frac{A}{2x-1} + \frac{Bx+C}{x^2+2}$, following factors from part (i)	B1√	
		Use relevant method to find a constant	M1	
		Obtain $A = -4$, following factors from part (i)	A1√	
		Obtain $B = 2$	A1	
		Obtain $C = 5$	A1	

Q9.

3 (i) Substitute -2 and equate to zero or divide by x+2 and equate remainder to zero or use -2 in synthetic division

Obtain a = -1M1

A1 [2]

(ii) Attempt to find quadratic factor by division reaching $x^2 + kx$, or inspection as far as $(x+2)(x^2+Bx+c)$ and equations for one or both of B and C, or $(x+2)(Ax^2+Bx+7)$ and equations for one or both of A and B.

Obtain x^2-3x+7 Use discriminant to obtain -19, or equivalent, and confirm one root cwo

A1 [3]

Q10.

3 Substitute $x = -\frac{1}{3}$, equate result to zero or divide by 3x + 1 and equate the remainder to zero

and obtain a correct equation, e.g. $-\frac{1}{27}a+\frac{1}{9}b-\frac{1}{3}+3=0$ B1

Substitute x=2 and equate result to 21 or divide by x-2 and equate constant remainder to 21 M1

Obtain a correct equation, e.g. 8a+4b+5=21 A1

Solve for a or for b M1

Obtain a=12 and b=-20 A1 [5]

Q11.

3	(i)	Either Equate $p(-1)$ or $p(-2)$ to zero or divide by $(x+1)$ or $(x+2)$ and equate constant remainder to zero.	M*1		
			Obtain two equations $a - b = 6$ and $4a - 2b = 34$ or equivalents	A1	
			Solve pair of equations for a or b	DM*1	
			Obtain $a = 11$ and $b = 5$	A1	
		Or	State or imply third factor is $4x-1$	B1	
			Carry out complete expansion of $(x+1)(x+2)(4x-1)$ or	M1	
			(x+1)(x+2)(Cx+D)		
			Obtain $a = 11$	A1	
			Obtain $b = 5$	A1	[4]
	(ii)	Use division or equivalent and obtaining linear remainder		M1	
	2.		quotient $4x + a$, following their value of a	A1√	
		Indicate	e remainder $x-13$	A1	[3]